

Using VERITAS Cluster Server

Jim Senicka
Product Management
VERITAS Software

June 2001

Business Without Interruption

Using VERITAS Cluster Server 9/13/01
Page ii

Table of Contents

EXECUTIVE OVERVIEW ..4

CREDITS ...4

VCS BUILDING BLOCKS ...4
CLUSTERS.. 5
RESOURCES AND RESOURCE TYPES .. 5
AGENTS.. 6
CLASSIFICATIONS OF VCS AGENTS.. 7

Bundled Agents..7
Enterprise Agents..7
Storage Agents...8
Custom Agents...8

SERVICE GROUPS ... 8
RESOURCE DEPENDENCIES.. 9
TYPES OF SERVICE GROUPS.. 10

Failover Groups..11
Parallel Groups...11

CLUSTER COMMUNICATIONS (HEARTBEAT).. 11
PUTTING THE PIECES T OGETHER.. 11

COMMON CLUSTER CONFIGURATION TASKS ...13
HEARTBEAT NETWORK CONFIGURATION.. 13
STORAGE CONFIGURATION... 14

Dual hosted SCSI..14
Storage Area Networks..17
Storage Configuration Sequence..17

APPLICATION SETUP... 18
PUBLIC NETWORK DETAILS.. 19
INITIAL VCS INSTALL AND SETUP ... 19
COMMUNICATION VERIFICATION... 19

LLT ..20
GAB ...20
Cluster operation ..21

VCS CONFIGURATION CONCEPTS...21
CONFIGURATION FILE LOCATIONS... 21
MAIN.CF FILE CONTENTS... 22
SAMPLE INITIAL CONFIGURATION... 23
SAMPLE TWO NODE ASYMMETRIC NFS CLUSTER... 23

Example main.cf file...24
RESOURCE TYPE DEFINITIONS.. 25
ATTRIBUTES.. 27

Type dependant attributes...28
Type independent attributes..29
Resource specific attributes..29
Type specific attributes..29
Local and Global attributes..30

MODIFYING THE CONFIGURATION ...30
MODIFYING THE MAIN.CF FILE... 31

Using VERITAS Cluster Server 9/13/01
Page 1

MODIFYING THE CONFIGURATION FROM THE COMMAND LINE.. 31
MODIFYING THE CONFIGURATION USING THE GUI... 31
ADDING SNMP TRAPS.. 31
USING PROXY RESOURCES ... 32

CONFIGURATION FILE REPLICATION ..32
VCS STARTUP... 32
VCS SHUTDOWN.. 34
STALE CONFIGURATIONS... 36
WORKING EXAMPLES... 36

NFS SAMPLE CONFIGURATIONS ..37
TWO NODE SYMMETRICAL NFS CONFIGURATION... 37

Example main.cf file...38
COMMAND LINE MODIFICATION EXAMPLE... 39
USING A NIC PROXY.. 40

Example main.cf file...41
CONFIGURING A PARALLEL NIC GROUP AND USING PROXY... 42

Example main.cf..42
SPECIAL STORAGE CONSIDERATIONS FOR NFS SERVICE ... 44

ORACLE SAMPLE CONFIGURATIONS..45
ORACLE SETUP.. 45
ORACLE ENTERPRISE AGENT INSTALLATION... 46
SINGLE INSTANCE CONFIGURATION... 46

Example main.cf..47
Oracle listener.ora configuration ..48

ADDING DEEP LEVEL TESTING.. 49
Oracle changes..49
VCS Configuration changes..50

MULTIPLE INSTANCE CONFIGURATION... 50
Example main.cf..51
Oracle listener.ora configuration ..54

LOCATION OF ORACLE BINARIES... 55
Oracle binaries on shared disk...55
Oracle binaries on local disk..55
What is the correct choice?...56

USING IPMULTINIC AND MULTINICA..56
CONFIGURING IPMULTINIC AND MULTINICA RESOURCE PAIRS... 56

Example main.cf..57
NOTES ABOUT USING MULTINICA AGENT... 58
USING A PARALLEL MULTINICA GROUP AND PROXY... 58

Example main.cf..58
ALTERING AGENT/RESOURCE TYPE BEHAVIOR..60

COMMON RESOURCE TYPE ATTRIBUTES... 60
ConfInterval...60
FaultOnMonitorTimeouts..60
MonitorInterval...61
MonitorTimeout...61
OfflineMonitorInterval...61
OfflineTimeout...61
OnlineRetryLimit...61
OnlineTimeout...62

Using VERITAS Cluster Server 9/13/01
Page 2

RestartLimit ...62
ToleranceLimit ..62

USAGE EXAMPLE.. 62
CONFIGURING DIFFERENT AGENT BEHAVIOR FOR MULTIPLE RESOURCES... 63

SERVICE GROUP WORKLOAD MANAGEMENT (SGWM) ..64
SGWM CONCEPTS... 64

System Capacity and Service Group Load...65
Static Load vs. Dynamic Load..65
Limits and Prerequisites..66
Capacity and Limits Together..66
Overload Warning..67
SystemZones...67
Load Based AutoStart ..67

CONFIGURING SGWM... 68
System attributes...68
Service Group Attributes...70

MAIN.CF USAGE ... 71
SGWM EXAMPLES.. 72

Simple 4-node limits only example..72
Simple 4-node load based example..74
Complex 4-node example..77
Server Consolidation Example...81

COMMON PROBLEMS ...86
AUTODISABLED SERVICE GROUPS.. 86
RESOURCES NOT PROBED... 86
STALE/INVALID CONFIGURATION.. 87
APPLICATION/RESOURCES NOT STARTING ... 87

FAILOVER TIMES AND OTHER PERFORMANCE ISSUES ...87
VCS FAILURE DETECTION/FAILOVER PERFORMANCE... 87

Bringing a Service Group Online..88
Taking a Service Group Offline..88
Bringing a Resource Online..88
Taking a Resource Offline...88
Service Group Switch...89
Service Group Failover ...89
Detecting Resource Failure..89
Detecting System Failure ..90
Detecting Network Link Failure...90
Cluster Boot Time ...90

IMPACT OF VCS ON OVERALL SYSTEM PERFORMANCE.. 91
Kernel Components (GAB and LLT) ...91
VCS Engine..91

REDUCING FAILOVER TIME .. 92
Reducing Database Recovery Time ...92
Reducing Storage Import Time ...92

RECOMMENDED CONFIGURATIONS ...93
ELIMINATE SINGLE POINTS OF FAILURE... 93

Heartbeat Network ...93
Public network...93
Disk Storage...94
Avoid Failover! ...94

Using VERITAS Cluster Server 9/13/01
Page 3

BUILDING A SOLID FOUNDATION... 95
System Availability, Scalability and Performance..95
Data Availability...96
Application Availability...96

THINGS TO AVOID.. 96
Using Outside Name Services...96
NFS File Service...97
Using NFS in the Cluster...97

CLUSTER CONFIGURATION ... 97
Number of nodes ...97
Storage Configuration..98

Using VERITAS Cluster Server 9/13/01
Page 4

Executive Overview
This document is intended for System Administrators, System Architects, IT
Managers and other IT professionals interested in increasing application
availability through the use of VERITAS Cluster Server (VCS). This white paper
is intended to provide information on configuration and use of the second-
generation High Availability product, VERITAS Cluster Server. The white paper
will describe terminology, technology and common configurations. It is not
designed to replace standard VERITAS documentation, but rather to act as an
additional source of information for IT professionals wishing to deploy the
VERITAS Cluster Server

This paper is part of a series on VCS. Other papers include Managing Application
Availability with VCS, VCS Daemons and Communications, VCS Agent
Development and VCS Frequently Asked Questions.

Credits
Special thanks to the following VERITAS folks:

Darshan Joshi, Shardul Divatia, Phil French and Kaushal Dalal and the rest of the
VCS Engineering team for answering hundreds of questions.

Tom Stephens for providing the initial FAQ list, guidance, humor and constant
review

Evan Marcus for providing customer needs, multiple review cycles and co-
authoring what is, in my opinion, the best book on High Availability published,
“Blueprints for High Availability. Designing Resilient Distributed Systems”

VCS Building Blocks
At first glance, VCS seems to be a very complex package. By breaking the
technology into understandable blocks, it can be explained in a much simpler
fashion. The following section will describe each major building block in a VCS
configuration. Understanding each of these items as well as interaction with
others is key to understanding VCS. The primary items to discuss include the
following:

• Clusters

• Resources and resource types

• Resource Categories

• Agents

Using VERITAS Cluster Server 9/13/01
Page 5

• Agent Classifications

• Service Groups

• Resource Dependencies

• Heartbeat

Clusters
A single VCS cluster consists of multiple systems connected in various
combinations to shared storage devices. VCS monitors and controls applications
running in the cluster, and can restart applications in response to a variety of
hardware or software faults. A cluster is defined as all systems with the same
cluster-ID and connected via a set of redundant heartbeat networks. (See the VCS
Daemons and Communications white paper for a detailed discussion on cluster ID
and heartbeat networks). Clusters can have from 1 to 32 member systems, or
“nodes”. All nodes in the cluster are constantly aware of the status of all resources
on all other nodes. Applications can be configured to run on specific nodes in the
cluster. Storage is configured to provide access to shared application data for
those systems hosting the application. In that respect, the actual storage
connectivity will determine where applications can be run. Nodes sharing access
to storage will be “eligible” to run an application. Nodes without common storage
cannot failover an application that stores data to disk.

Within a single VCS cluster, all member nodes must run the same operating
system family. For example, a Solaris cluster would consist of entirely Solaris
nodes, likewise with HP/UX and NT clusters. Multiple clusters can all be
managed from one central console with the Cluster Server Cluster Manager.

The Cluster Manager allows an administrator to log in and manage a virtually
unlimited number of VCS clusters, using one common GUI and command line
interface. The common GUI and command line interface is one of the most
powerful features of VCS. NT and Unix versions have an identical user interface.

Resources and Resource Types
Resources are hardware or software entities, such as disks, network interface
cards (NICs), IP addresses, applications, and databases, which are controlled by
VCS. Controlling a resource means bringing it online (starting), taking it offline
(stopping) as well as monitoring the health or status of the resource.

Resources are classified according to types, and multiple resources can be of a
single type; for example, two disk resources are both classified as type Disk. How
VCS starts and stops a resource is specific to the resource type. For example,
mounting starts a file system resource, and an IP resource is started by
configuring the IP address on a network interface card. Monitoring a resource
means testing it to determine if it is online or offline. How VCS monitors a
resource is also specific to the resource type. For example, a file system resource

Using VERITAS Cluster Server 9/13/01
Page 6

tests as online if mounted, and an IP address tests as online if configured. Each
resource is identified by a name that is unique among all resources in the cluster.

Different types of resources require different levels of control. Most resource
types are classified as “On-Off” resources. In this case, VCS will start and stop
these resources as necessary. For example, VCS will import a disk group when
needed and deport when it is no longer needed.

VCS as well as external applications may need other resources. An example is
NFS daemons. VCS requires the NFS daemons to be running to export a file
system. There may also be other file systems exported locally, outside VCS
control. The NFS resource is classified as “OnOnly”. VCS will start the daemons
if necessary, but does not stop them if the service group is offlined.

The last level of control is a resource that cannot be physically onlined or offlined,
yet VCS needs the resource to be present. For example, a NIC cannot be started or
stopped, but is necessary to configure an IP address. Resources of this type are
classified as “Persistent” resources. VCS monitors to make sure they are present
and healthy. Failure of a persistent resource will trigger a Service Group failover.

VCS includes a set of predefined resources types. For each resource type, VCS
has a corresponding agent. The agent provides the resource type specific logic to
control resources.

Agents
The actions required to bring a resource online or take it offline differ
significantly for different types of resources. Bringing a disk group online, for
example, requires importing the Disk Group, whereas bringing an Oracle database
online would require starting the database manager process and issuing the
appropriate startup command(s) to it. From the cluster engine’s point of view the
same result is achieved—making the resource available. The actions performed
are quite different, however. VCS handles this functional disparity between
different types of resources in a particularly elegant way, which also makes it
simple for application and hardware developers to integrate additional types of
resources into the cluster framework.

Each type of resource supported in a cluster is associated with an agent. An agent
is an installed program designed to control a particular resource type. For
example, for VCS to bring an Oracle resource online it does not need to
understand Oracle; it simply passes the online command to the OracleAgent. The
Oracle Agent knows to call the server manager and issue the appropriate startup
command. Since the structure of cluster resource agents is straightforward, it is
relatively easy to develop agents as additional cluster resource types are
identified.

Using VERITAS Cluster Server 9/13/01
Page 7

VCS agents are “multi threaded”. This means single VCS agent monitors multiple
resources of the same resource type on one host; for example, the DiskAgent
manages all Disk resources. VCS monitors resources when they are online as well
as when they are offline (to ensure resources are not started on systems where
there are not supposed to be currently running). For this reason, VCS starts the
agent for any resource configured to run on a system when the cluster is started.

If there are no resources of a particular type configured to run on a particular
system, that agent will not be started on any system. For example, if there are no
Oracle resources configured to run on a system (as the primary for the database,
as well as acting as a “failover target”), the OracleAgent will not be started on that
system.

Classifications of VCS Agents

Bundled Agents
Agents packaged with VCS are referred to as bundled agents. They include agents
for Disk, Mount, IP, and several other resource types. For a complete description
of Bundled Agents shipped with the VCS product, see the VCS Bundled Agents
Guide.

Enterprise Agents
Enterprise Agents are separately packaged agents that that can be purchased from
VERITAS to control popular third party applications. They include agents for
Informix, Oracle, NetBackup, and Sybase. Each Enterprise Agent ships with
documentation on the proper installation and configuration of the agent.

VERITAS Cluster Server
ne

SQL
Server

Oracle
Agent

Custom
Agent

??

Using VERITAS Cluster Server 9/13/01
Page 8

Storage Agents
Storage agents provide control and access to specific kinds of enterprise storage,
such as the Network Appliance Filer series and the VERITAS SERVPoint NAS
Appliance.

Custom Agents
If a customer has a specific need to control an application that is not covered by
the agent types listed above, a custom agent must be developed. VERITAS
Enterprise Consulting Services provides agent development for customers, or the
customer can choose to write their own. Refer to the VERITAS Cluster Server
Agent Developers Guide, which is part of the standard documentation distribution
for more information on creating VCS agents.

Service Groups
Service Groups are the primary difference between first generation HA packages
and second generation. Early systems used the entire server as a level of
granularity for failover. If an application failed, all applications were migrated to a
second machine. Second generation HA packages such as VCS reduce the level of
granularity for application control to a smaller level. This smaller container
around applications and associated resources is called a Service Group. A service
group is a set of resources working together to provide application services to
clients.

For example, a web application Service Group might consist of:

• Disk Groups on which the web pages to be served are stored,

• A volume built in the disk group,

• A file system using the volume,

• A database whose table spaces are files and whose rows contain page pointers,

• The network interface card (NIC) or cards used to export the web service,

• One or more IP addresses associated with the network card(s), and,

• The application program and associated code libraries.

VCS performs administrative operations on resources, including starting,
stopping, restarting, and monitoring at the Service Group level. Service Group
operations initiate administrative operations for all resources within the group. For
example, when a service group is brought online, all the resources within the
group are brought online. When a failover occurs in VCS, resources never failover
individually – the entire service group that the resource is a member of is the unit

Using VERITAS Cluster Server 9/13/01
Page 9

of failover. If there is more than one group defined on a server, one group may
failover without affecting the other group(s) on the server.

From a cluster standpoint, there are two significant aspects to this view of an
application Service Group as a collection of resources:

• If a Service Group is to run on a particular server, all of the resources it
requires must be available to the server.

• The resources comprising a Service Group have interdependencies; that is,
some resources (e.g., volumes) must be operational before other resources
(e.g., the file system) can be made operational.

Resource dependencies

One of the most important parts of a service group definition is the concept of
resource dependencies. As mentioned above, resource dependencies determine the
order specific resources within a Service Group are brought online or offline when
the Service Group is brought offline or online. For example, a VxVM Disk Group
must be imported before volumes in the disk group can be started and volumes
must start before file systems can be mounted. In the same manner, file systems
must be unmounted before volumes are stopped and volumes stopped before disk
groups deported. Diagramming resources and their dependencies forms a graph.
In VCS terminology, resources are Parents or Children. Parent resources appear at
the top of the arcs that connect them to their child resources. Typically, child
resources are brought online before parent resources, and parent resources are
taken offline before child resources. Resources must adhere to the established
order of dependency. The dependency graph is common shorthand used to
document resource dependencies within a Service Group. The illustration shows
a resource dependency graph for a cluster service.

Using VERITAS Cluster Server 9/13/01
Page 10

In the figure above, the lower (child) resources represent resources required by the
upper (parent) resources. Thus, the volume requires that the disk group be online,
the file system requires that the volume be active, and so forth. The application
program itself requires two independent resource sub trees to function—a
database and an IP address for client communications.

VCS includes a language for specifying resource types and dependency
relationships. The High Availability Daemon, HAD uses resource definitions and
dependency definitions when activating or deactivating applications. In general,
child resources must be functioning before their parents can be started. Referring
to the figure above for example, the disks and the network card could be brought
online concurrently, because they have no interdependencies. When all child
resources required by a parent are online, the parent itself is brought online, and
so on up the tree, until finally the application program itself is started.

Similarly, when deactivating a service, the cluster engine begins at the top of the
graph. In the example above, the application program would be stopped first,
followed by the database and the IP address in parallel, and so forth.

Types of Service Groups
VCS service groups fall in two categories, depending on whether they can be run
on multiple servers simultaneously.

DiskGroup

Volume

File

Database

Network
Card

IP Address

App

Volume
requires

DiskGroup

Application
requires

database and
IP address

Using VERITAS Cluster Server 9/13/01
Page 11

Failover Groups
A failover group runs on one system in the cluster at a time. Failover groups are
used for most application services, such as most databases, NFS servers and any
other application not designed to maintain data consistency when multiple copies
are started.

The VCS engine assures that a service group is only online, partially online or in
any states other than offline (such as attempting to go online or attempting to go
offline).

Parallel Groups
A parallel group can runs concurrently on more than one system in the cluster at a
time.

A parallel service group is more complex than a failover group. It requires an
application that can safely be started on more than one system at a time, with no
threat of data corruption. This is explained “Managing Application Availability
with VERITAS Cluster Server” under Horizontal Scaling.

In real world customer installations, parallel groups are used less than 1% of the
time.

Cluster Communications (Heartbeat)
VCS uses private network communications between cluster nodes for cluster
maintenance. This communication takes the form of nodes informing other nodes
they are alive, known as heartbeat, and nodes informing all other nodes of actions
taking place and the status of all resources on a particular node, known as cluster
status. This cluster communication takes place over a private, dedicated network
between cluster nodes. VERITAS requires two completely independent, private
networks between all cluster nodes to provide necessary communication path
redundancy and allow VCS to discriminate between a network failure and a
system failure.

VCS uses a purpose built communication package, comprised of the Low Latency
Transport (LLT) and Group Membership/Atomic Broadcast (GAB). These
packages function together as a replacement for the IP stack and provide a robust,
high-speed communication link between systems without the latency induced by
the normal network stack.

VCS communications are discussed in detail in the white paper “VCS Daemons
and Communications”

Putting the pieces together.
How do all these pieces tie together to form a cluster? Understanding this makes
the rest of VCS fairly simple. Let’s take a very common example, a two-node
cluster serving a single NFS file system to clients. The cluster itself consists of

Using VERITAS Cluster Server 9/13/01
Page 12

two nodes; connected to shared storage to allow both servers to access the data
needed for the file system export.

In this example, we are going to configure a single Service Group called
NFS_Group that will be failed over between ServerA and ServerB as necessary.
The service group, configured as a Failover Group, consists of resources, each
one with a different resource type. The resources must be started in a specific
order for everything to work. This is described with resource dependencies.
Finally, in order to control each specific resource type, VCS will require an agent.
The VCS engine, HAD, will read the configuration file and determine what agents
are necessary to control the resources in this group (as well as any resources in
any other service group configured to run on this system) and start the
corresponding VCS Agents. HAD will then determine the order to bring up the
resources based on resource dependency statements in the configuration. When it
is time to online the service group, VCS will issue online commands to the proper
agents in the proper order. The following drawing is a representation of a VCS
service group, with the appropriate resources and dependencies for the NFS
Group. The method used to display the resource dependencies is identical to the
VCS GUI.

In this configuration, the VCS engine would start agents for DiskGroup, Mount,
Share, NFS, NIC and IP on all systems configured to run this group. The resource
dependencies are configured as follows:

nfs_IP

nfs_group_hme0

home_mount

shared_dg1

home_share

NFS_nfs_group_16

nfs_IPnfs_IP

nfs_group_hme0nfs_group_hme0

home_mounthome_mount

shared_dg1shared_dg1

home_sharehome_share

NFS_nfs_group_16NFS_nfs_group_16

Using VERITAS Cluster Server 9/13/01
Page 13

• The /home file system, shown as home_mount requires the Disk Group
shared_dg1 to be online before mounting

• The NFS export of the home file system requires the home file system to
be mounted as well as the NFS daemons to be running.

• The high availability IP address, nfs_IP requires the file system to be
shared as well as the network interface to be up, represented as
nfs_group_hme0.

• The NFS daemons and the Disk Group have no lower (child)
dependencies, so they can start in parallel.

• The NIC resource is a persistent resource and does not require starting..

The NFS Group can be configured to start automatically on either node in the
example. It can then move or failover to the second node based on operator
command, or automatically if the first node fails. VCS will offline the resources
starting at the top of the graph and start them on the second node starting at the
bottom of the graph.

Common cluster configuration tasks
Regardless of overall cluster intent, several steps must be taken in all new VCS
cluster configurations. These include VCS heartbeat setup, storage configuration
and system layout. The following section will cover these basics.

Heartbeat network configuration
VCS private communications/heartbeat is one of the most critical configuration
decisions, as VCS uses this path to control the entire cluster and maintain a
coherent state. Loss of heartbeat communications due to poor network design can
cause system outages, and at worst case even data corruption.

It is absolutely essential that two completely independent networks be provided
for private VCS communications. Completely independent means there can be no
single failure that can disable both paths. Careful attention must be paid to wiring
runs, network hub power sources, network interface cards, etc. To state it another
way, “the only way it should be possible to lose all communications between two
systems is for one system to fail. If any failure can remove all communications
between systems, AND still leave systems running and capable of accessing
shared storage, a chance for data corruption exists.

To set up private communications, first choose two independent network interface
cards within each system. Use of two ports on a multi-port card should be
avoided. To interconnect, VERITAS recommends the use of network hubs from a
quality vendor. Crossover cabling between two node clusters is acceptable,
however the use of hubs allows future cluster growth without system heartbeat

Using VERITAS Cluster Server 9/13/01
Page 14

interruption of existing nodes. Next ensure the hubs are powered from separate
power sources. In many cases, tying one hub to the power source for one server
and the second hub to power for the second server provides adequate redundancy.
Connect systems to the hubs with professionally built network cables, running on
separate paths. Ensure a single wiring bundle or network patch panel problem
cannot affect both cable runs.

Depending on operating system, ensure network interface speed and duplex
settings are hard set and auto negotiation is disabled.

Test the network connections by temporarily assigning network addresses and use
telnet or ping to verify communications. You must use different IP network
addresses to ensure traffic actually uses the correct port. VERITAS also provides
a layer-2 connectivity test called “dlpiping” that can be used to test network
connectivity without configuring IP addresses.

The InstallVCS script (Solaris version 1.3 and above and HP version 1.3.1 Patch 3
and above) will configure actual VCS heartbeat at a later time. For manual VCS
communication configuration, see the VCS Daemons and Communications white
paper..

To add more robust heartbeat capabilities, in addition to the two private networks,
additional heartbeat capability may be added on the customer public network
(referred to as a “low priority” heartbeat) and over disk channels (referred to as
“gabdisk”). These additional heartbeat capabilities are discussed in the VCS
Daemons and Communications white paper.

Storage Configuration.
As described in “Storage considerations” in Managing Application Availability
with VERITAS Cluster Server, VCS is a designed as a “shared data” high
availability product. In order to failover an application from one node to another,
both nodes must have direct access to the data storage. This can be accomplished
with dual hosted SCSI or a Storage Area Network. The use of replicated data
instead of shared disk is only supported in very limited configurations and will not
be discussed in this document.

Dual hosted SCSI
Dual hosted SCSI has been around for a number of years and works well in
smaller configurations. Its primary limitation is scalability. Typically two and at
most four systems can be connected to a single drive array. Large storage vendors
such as EMC provide high-end arrays with multiple SCSI connections into an
array to overcome this problem. In most cases however, the nodes will be
connected to a simple array in a configuration like the following diagram.

Using VERITAS Cluster Server 9/13/01
Page 15

Notice the SCSI Host ID settings on each system. A typical SCSI bus has one
SCSI Initiator (Controller or Host Bus Adapter) and one or more SCSI Targets
(Drives). To configure a dual hosted SCSI configuration, one SCSI Initiator or
SCSI Host ID must be set to a value different than its peer. The SCSI ID must be
chosen so it does not conflict with any drive installed or the peer initiator.

The method of setting SCSI Initiator ID is dependant on the system manufacturer.

Sun Microsystems provides two methods to set SCSI ID. One is at the EEPROM
level and affects all SCSI controllers in the system. It is set by changing the scsi-
initiator-id value in the Open Boot Prom, such as setenv scsi-initiator-id = 5. This
change affects all SCSI controllers, including the internal controller for the system
disk and CD-ROM. Be careful when choosing a new controller ID to not conflict
with the boot disk, floppy drive or CD-ROM. On most recent Sun systems, ID 5 is
a possible choice. Sun systems can also set SCSI ID on a per controller basis if
necessary. This is done be editing the SCSI driver control file in the /kernel/drv
area. For details on setting SCSI ID on a per controller bases, please see the VCS
Installation Guide.

NT/Intel systems are typically set on a per controller basis with a utility package
provided by the SCSI controller manufacturer. This is available during system
boot time with a command sequence such as <cntrl S> or <cntrl U> or as a utility
run from within NT. Refer to your system documentation for details.

HP/UX systems vary between platforms. On recent 800 class servers, SCSI
initiator values are set from the system prom.

Private
Networks

S D

Sun ENT ERP RI SE

Ω

Ω

Ω

4 0 0 0

S PA RC
DR IV EN
UL TR A

SD

Sun E NT E RPR I SE

Ω

Ω

Ω

4 0 0 0

S PAR C
DR IVE N
ULT RA

A B

Public network

Dual Hosted
external

SCSI Array

SCSI
Host

ID = 5

SCSI
Host
ID = 7

SD

IN

O U T

H IGH

L O

Using VERITAS Cluster Server 9/13/01
Page 16

The most common problem seen in configuring shared SCSI storage is duplicate
SCSI Ids. A duplicate SCSI ID will, in many cases, exhibit different symptoms
depending on whether there are duplicate controller Ids or a controller ID
conflicting with a disk drive. A controller conflicting with a drive will often
manifest itself as “phantom drives”. For example, on a Sun system with a drive ID
conflict, the output of the format command will show 16 drives, ID 0-15 attached
to the bus with the conflict. Duplicate controller Ids are a very serious problem,
yet are harder to spot. SCSI controllers are also known as SCSI Initiators. An
initiator, as the name implies, initiates commands. SCSI drives are targets. In a
normal communication sequence, a target can only respond to a command from
am initiator. If an initiator sees a command from an initiator, it will be ignored.
The problem may only manifest itself during simultaneous commands from both
initiators. A controller could issue a command, and see a response from a drive
and assume all was well. This command may actually have been from the peer
system. The original command may have not happened. Carefully examine
systems attached to shared SCSI and make certain controller ID is different.

The following is an example of a typical shared SCSI configuration.

• Start with the storage attached to one system. Terminate the SCSI bus at
the array.

• Power up the host system and array.

• Verify all drives can be seen with the operating system using available
commands such as format or ioscan.

• Identify what SCSI drive ID’s are used in the array and internal SCSI
drives if present.

• Identify the SCSI controller ID. On Sun systems, this is displayed at
system boot. NT systems may require launching the SCSI configuration
utility during system boot.

• Identify a suitable ID for the controller on the second system.

o This ID must not conflict with any drive in the array or the peer
controller.

o If you plan to set all controllers to a new ID, as done from
EEPROM on a Sun system, ensure the controller ID chosen on the
second system does not conflict with internal SCSI devices.

• Set the new SCSI controller ID on the second system. It may be a good
idea to test boot at this point.

Using VERITAS Cluster Server 9/13/01
Page 17

• Power down both systems and the external array. SCSI controllers or the
array may be damaged if you attempt to “hot-plug” a SCSI cable.
Disconnect the SCSI terminator and cable the array to the second system.

• Power up the array and both systems. Depending on hardware platform,
you me be able to check for array connectivity before the operating system
is brought up.

o On Sun systems, halt the boot process at the boot prom. Use the
command probe-scsi-all to verify the disks can be seen from the
hardware level on both systems. If this works, proceed with a boot
–r to reconfigure the Solaris /dev entries.

o On NT systems, most SCSI adapters provide a utility available
from the boot sequence. Entering the SCSI utility will allow you to
view attached devices. Verify both systems can see the shared
storage, verify SCSI controller ID one last time and then boot the
systems.

• Boot console messages such as “unexpected SCSI reset” are a normal
occurrence during the boot sequence of a system connected to a shared
array. Most SCSI adapters will perform a bus reset during initialization.
The error message is generated when it sees a reset it did not initiate
(initiated by the peer).

Storage Area Networks
Storage Area networks or SANs have dramatically increased configuration
capability and scalability in cluster environments. The use of Fibre Channel fabric
switches and loop hubs allow storage to be added with no electrical interruption to
the host system as well as eliminates termination issues.

Configuration steps to build a VCS cluster on a SAN differ depending on SAN
architecture.

Depending on system design, it is likely you will not be able to verify disk
connectivity before system boot. It is not necessary to set initiator ID’s in a SAN
environment.. Once the necessary Host Bus Adapters are installed and cabled,
boot the systems and verify connectivity as outlined below.

Storage Configuration Sequence
VCS requires the underlying operating system to be able to see and access shared
storage. After installing the shared array, verify the drives can be seen from the
operating system. In Solaris, the format command can be used. On HP, use the
ioscan –C disk command, or simply ioscan

Once disk access is verified from the operating system, it is time to address cluster
storage requirements. This will be determined by the application(s) that will be

Using VERITAS Cluster Server 9/13/01
Page 18

run in the cluster. The rest of this section assumes the installer will be using the
VERITAS Volume Manager VxVM to control and allocate disk storage.

Recall the discussion on Service Groups. In this section it was stated that a service
group must be completely self-contained, including storage resources. From a
VxVM perspective, this means a Disk Group can only belong to one service
group. Multiple service groups will require multiple Disk Groups. Volumes may
not be created in the VxVM rootdg for use in VCS, as rootdg cannot be deported
and imported by the second server.

Determine the number of Disk Groups needed as well as the number and size of
volumes in each disk group. Do not compromise disk protection afforded by disk
mirroring or RAID to achieve the storage sizes needed. Buy more disks if
necessary!

Perform all VxVM configuration tasks from one server. It is not necessary to
perform any volume configuration on the second server, as all volume
configuration data is stored within the volume itself. Working from one server
will significantly decrease chances of errors during configuration.

Create required file systems on the volumes. On Unix systems, the use of
journeled file systems is highly recommended (VxFS or Online JFS) to minimize
recovery time after a system crash. On NT systems, utilize the NTFS file system.
Do not configure file systems to automatically mount at boot time. This is the
responsibility of VCS. Test access to the new file systems.

On the second server, create all necessary file system mount points to mirror the
first server. At this point, it is recommended the VxVM disk groups be deported
from the first server and imported on the second server and files systems test
mounted.

Application setup
One of the primary difficulties new VCS users encounters is “trying to get
applications to work in VCS”. Very rarely is the trouble with VCS, but rather the
application itself. VCS has the capability to start, stop and monitor individual
resources. It does not have any magic hidden powers to start applications. Stated
simply, “if the application can not be started from the command line, VCS will
not be able to start it”. Understanding this is the key to simple VCS deployments.
Manually testing that an application can be started and stopped on both systems
before VCS is involved will save lots of time and frustration.

Another common question concerns application install locations. For example, in
a simple two-node Oracle configuration, should the Oracle binaries be installed on
the shared storage or locally on each system? Both methods have benefits.
Installing application binaries on shared storage can provide simpler
administration. Only one copy must be maintained, updated, etc. Installing
separate copies also has its strong points. For example, installing local copies of

Using VERITAS Cluster Server 9/13/01
Page 19

the Oracle binaries may allow the offline system to upgraded with the latest
Oracle patch and minimize application downtime. The offline system is upgraded,
the service group is failed over to the new patched version, and the now offline
system is upgraded. Refer to the Oracle section for more discussion on this topic.

Chose whichever method best suits your environment. Then install and test the
application on one server. When this is successful, deport the disk group, import
on the second server and test the application runs properly. Details like system file
modifications, file system mount points, licensing issues, etc. are much easier to
sort out at this time, before bringing the cluster package into the picture.

While installing, configuring and testing your application, document the exact
resources needed for this application and what order they must be configured.
This will provide you with the necessary resource dependency details for the VCS
configuration. For example, if your application requires 3 file systems, the
beginning resource dependency is disk group, volumes, file systems.

Public Network details
VCS service groups require an IP address for client access. This address will be
the High Availability address or “floating” address. During a failover, this address
is moved from one server to another. Each server configured to host this service
group must have a physical NIC on the proper subnet for the HA IP address. The
physical interfaces must be configured with a fixed IP address at all times. Clients
do not need to know the physical addresses, just the HA IP address. For example,
two servers have hostnames SystemA and SystemB, with IP addresses of IP
192.168.1.1 and 192.168.1.2 respectively. The clients could be configured to
access SystemAB at 192.168.1.3. During the cluster implementation, name
resolution systems such as DNS, NIS or WINS will need to be updated to
properly point clients to the HA address.

VCS cannot be configured to fail an IP address between subnets. While it is
possible to do with specific configuration directives, moving an IP address to a
different subnet will make it inaccessible and therefore useless.

Initial VCS install and setup
VERITAS provides a setup script called InstallVCS that automates the installation
of VCS packages and communication setup. In order to run this utility, rsh access
must be temporarily provide between cluster nodes. This can be done by editing
the /.rhosts file and providing root rsh access for the duration of the install.
Following software install, rsh access can be disabled. Please see the VCS
Installation Guide for detailed instructions on the InstallVCS utility.

Communication verification
The InstallVCS utility on Unix and the NT setup utility create a very basic
configuration with LLT and GAB running and a basic configuration file to allow
VCS to start. At this time, it is a good practice to verify VCS communications.

Using VERITAS Cluster Server 9/13/01
Page 20

LLT
Use the lltstat command to verify that links are active for LLT. This
command returns information about the links for LLT for the system on which it
is typed. Refer to the lltstat(1M) manual page for more information. In the
following example, /sbin/lltstat –n is typed on each system in the
cluster.

ServerA# lltstat –n
Output resembles:
LLT node information:
Node State Links
*0 OPEN 2
1 OPEN 2
ServerA#

ServerB# lltstat -n
Output resembles:
LLT node information:
Node State Links
0 OPEN 2
*1 OPEN 2
ServerB#

Note that each system has two links and that each system is in the OPEN state. The
asterisk (*) denotes the system on which the command is typed.

GAB
To verify GAB is operating, use the /sbin/gabconfig –a command.

ServerA# /sbin/gabconfig -a
If GAB is operating, the following GAB port membership information is returned:

GAB Port Memberships
===================================
Port a gen a36e0003 membership 01
Port h gen fd570002 membership 01

Port a indicates that GAB is communicating between systems. The A port can
be considered GAB-to-GAB communications between nodes. gen a36e0003
is a random generation number, and membership 01 indicates that systems 0
and 1 are connected.

Port h indicates that VCS is started. Port H can be considered HAD-to-HAD
communication between nodes. gen fd570002 is a random generation
number, and membership 01 indicates that systems 0 and 1 are both
running VCS.

If GAB is not operating, no GAB port membership information is returned:

Using VERITAS Cluster Server 9/13/01
Page 21

GAB Port Memberships
===================================

If only one network is connected, the following GAB port membership
information is returned:

GAB Port Memberships
===================================
Port a gen a36e0003 membership 01
Port a gen a36e0003 jeopardy 1
Port h gen fd570002 membership 01
Port h gen fd570002 jeopardy 1

For more information on Jeopardy, see VCS Daemons and Communications

Cluster operation
To verify that the cluster is operating, use the /opt/VRTSvcs/bin
hastatus –summary command.

ServerA# hastatus -summary
The output resembles:

-- SYSTEM STATE
-- System State Frozen
A SystemA RUNNING 0
A SystemB RUNNING 0

Note the system state. If the value is RUNNING, VCS is successfully installed and
running. Refer to hastatus(1M) manual page for more information.

If any problems exist, refer to the VCS Installation Guide, Verifying LLT, GAB
and Cluster operation for more information.

VCS Configuration concepts
The following sections will describe the basics of VCS configuration and
configuration file maintenance.

Configuration file locations
VCS uses two main configuration files in a default configuration. The main.cf
file describes the entire cluster, and the types.cf file describes installed
resource types. By default, both of these files reside in the
/etc/VRTSvcs/conf/config directory Additional files similar to types.cf
may be present if additional agents have been added, such as Oracletypes.cf
or Sybasetypes.cf

Using VERITAS Cluster Server 9/13/01
Page 22

Main.cf file contents
The main.cf file is the single file used to define an individual cluster. The
overall format of the main.cf file is as follows:

• Include clauses
Include clauses are used to bring in resource definitions. At a minimum, the
types.cf file is included. Other type definitions must be configured as
necessary. Typically, the addition of VERITAS VCS Enterprise Agents will
add additional type definitions in their own files, as well as custom agents
developed for this cluster. Most customers and VERITAS consultants will not
modify the provided types.cf file, but instead create additional type files.

• Cluster definition
The cluster section describes the overall attributes of the cluster. This
includes:

• Cluster name
• Cluster GUI users

• System definitions
Each system designated as part of the cluster is listed in this section. The
names listed as system names must match the name returned by the uname –
a command in Unix. If fully qualified domain names are used, an additional
file, /etc/VRTSvcs/conf/sysname must be created. See the VCS
Installation Guide for more information on the use of the sysname file. System
names are preceded with the keyword “system”. For any system to be used in
a later service group definition, it must be defined here! Think of this as the
overall set of systems available, with each service group being a subset.

• snmp definition (see Enabling SNNP Traps for more information)
• Service group definitions

The service group definition is the overall attributes of this particular service
group. Possible attributes for a service group are: (See the VCS users Guide
for a complete list of Service Group Attributes)

• SystemList
o List all systems that can run this service group. VCS will not

allow a service group to be onlined on any system not in the
group’s system list. The order of systems in the list defines, by
default, the priority of systems used in a failover. For example,
SystemList = { ServerA, ServerB, ServerC } would
configure sysa to be the first choice on failover, followed by
sysb and so on. System priority may also be assigned explicitly
in the SystemList by assigning numeric values to each system
name. For example: SystemList{} = { ServerA=0,
ServerB=1, ServerC=2 } is identical to the preceding
example. But in this case, the administrator could change
priority by changing the numeric priority values. Also note the
different formatting of the “{}” characters. This is detailed
later in this section under “Attributes.”

Using VERITAS Cluster Server 9/13/01
Page 23

• AutoStartList
o The AutoStartList defines the system that should bring up the

group on a full cluster start. If this system is not up when all
others are brought online, the service group will remain off
line. For example: AutoStartList = { ServerA }.

• Resource definitions

This section will define each resource used in this service group. (And only
this service group). Resources can be added in any order and hacf will reorder
in alphabetical order the first time the config file is run.

• Service group dependency clauses
To configure a service group dependency, place the keyword requires clause
in the service group declaration within the VCS configuration file, before the
resource dependency specifications, and after the resource declarations.

• Resource dependency clauses
A dependency between resources is indicated by the keyword requires
between two resource names. This indicates that the second resource (the
child) must be online before the first resource (the parent) can be brought
online. Conversely, the parent must be offline before the child can be taken
offline. Also, faults of the children are propagated to the parent. This is the
most common resource dependency

Sample Initial configuration
When VCS is installed with the InstallVCS utility, there is a very basic main.cf
created with the cluster name, systems in the cluster and a GUI user “admin” with
the password “password”.

The following is an example of the main.cf for cluster “demo” and systems
“SystemA” and “SystemB”

include "types.cf"

cluster demo (

 UserNames = { admin = cDRpdxPmHpzS }

)

system SystemA
system SystemB

Sample Two node asymmetric NFS cluster
The following section will walk through a basic two-node cluster exporting an
NFS file system. The systems are configured as follows:

• Servers: ServerA and ServerB

Using VERITAS Cluster Server 9/13/01
Page 24

• Storage: One VxVM disk group, shared1

• File System: /home

• IP address: 192.168.1.3 IP_nfs1

• Public interface: hme0

• ServerA is primary location to start the NFS_group1

The resource dependency tree looks like the following example. Notice the IP
address is brought up last. In an NFS configuration this is important, as it prevents
the client from accessing the server until everything is ready. This will prevent
unnecessary “Stale Filehandle” errors on the clients and reduce support calls.

Example main.cf file
Comments in the example are preceded with “#”. Placing actual comments in the
main.cf file is not possible, since the hacf utility will remove them when it parses
the file.

include "types.cf"
cluster demo (
 UserNames = { admin = cDRpdxPmHpzS }

)

system ServerA

nfs_IP

nfs_group_hme0

home_mount

shared_dg1

home_share

NFS_nfs_group_16

nfs_IPnfs_IP

nfs_group_hme0nfs_group_hme0

home_mounthome_mount

shared_dg1shared_dg1

home_sharehome_share

NFS_nfs_group_16NFS_nfs_group_16

Using VERITAS Cluster Server 9/13/01
Page 25

system ServerB

snmp vcs

The following section will describe the NFS group. This group
definition runs till end of file or till next instance of the
keyword group

group NFS_group1 (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup DG_shared1 (
 DiskGroup = shared1
)

 IP IP_nfs1 (
 Device = hme0
 Address = "192.168.1.3"
)

 Mount Mount_home (
 MountPoint = "/export/home"
 BlockDevice = "/dev/vx/dsk/shared1/home_vol"
 FSType = vxfs
 MountOpt = rw
)

 NFS NFS_group1_16 (
 Nservers = 16

)

 NIC NIC_group1_hme0 (
 Device = hme0
 NetworkType = ether
)

 Share Share_home (
 PathName = "/export/home"
)

 IP_nfs1 requires Share_home
 IP_nfs1 requires NIC_group1_hme0
 Mount_home requires DG_shared1
 Share_home requires NFS_group1_16
 Share_home requires Mount_home
.

Resource type definitions
The types.cf file describes standard resource types to the VCS engine. The file
describes the data necessary to control a given resource. The following is an
example of the DiskGroup resource type definition.

Using VERITAS Cluster Server 9/13/01
Page 26

type DiskGroup (
 static int NumThreads = 1
 static int OnlineRetryLimit = 1
 static str ArgList[] = { DiskGroup, StartVolumes,
StopVolumes, MonitorOnly }
 NameRule = resource.DiskGroup
 str DiskGroup
 str StartVolumes = 1
 str StopVolumes = 1

The types definition performs two very important functions. First it defines the
sort of values that may be set for each attribute. In the DiskGroup example, the
NumThreads and OnlineRetryLimit are both classified as int, or integer. Signed
integer constants are a sequence of digits from 0 to 9. They may be preceded by a
dash, and are interpreted in base 10.

The DiskGroup, StartVolumes and StopVolumes are strings. As described in the
Users Guide: A string is a sequence of characters enclosed by double quotes. A
string may also contain double quotes, but the quotes must be immediately
preceded by a backslash. A backslash is represented in a string as \\. Quotes are
not required if a string begins with a letter, and contains only letters, numbers,
dashes (-), and underscores (_).

The second critical piece of information provided by the type definition is the
“ArgList”. The line “static str ArgList [] = { xxx, yyy, zzz } defines the order that
parameters are passed to the agents for starting, stopping and monitoring
resources. For example, when VCS wishes to online the disk group “shared_dg1”,
it passes the online command to the DiskGroupAgent with the following
arguments (shared_dg1 shared_dg1 1 1 <null>). This is the online command, the
name of the resource, then the contents of the ArgList. Since MonitorOnly is not
set, it is passed as a null. This is always the case: command, resource name,
ArgList.

For another example, look at the following main.cf and types.cf pair representing
an IP resource:

 IP nfs_ip1 (
 Device = hme0
 Address = "192.168.1.201"
)

type IP (
 static str ArgList[] = { Device, Address, NetMask, Options,
ArpDelay, IfconfigTwice }
 NameRule = IP_ + resource.Address
 str Device
 str Address
 str NetMask
 str Options
 int ArpDelay = 1
 int IfconfigTwice
)

Using VERITAS Cluster Server 9/13/01
Page 27

In this example, we configure the high availability address on interface hme0.
Notice the double quotes around the IP address. The string contains periods and
therefore must be quoted. The arguments passed to the IPAgent with the online
command (nfs_ip1 hme0 192.168.1.201 <null> <null> 1 <null>).

The VCS engine passes the identical arguments to the IPAgent for online, offline,
clean and monitor. It is up to the agent to use the arguments that it needs. This is a
very key concept to understand later in the custom agent section.

All resource names must be unique in a VCS cluster. If a name is not specified,
the hacf utility will generate a unique name based on the “NameRule” The
NameRule for the above example would provide a name of “IP_192.168.1.201”

For more information on creating custom resource type definitions as well as
custom agents, see the VCS Custom Agents white paper.

Attributes
VCS components are configured using “attributes”. Attributes contain data
regarding the cluster, systems, service groups, resources, resource types, and
agents. For example, the value of a service group’s SystemList attribute specifies
on which systems the group is configured, and the priority of each system within
the group. Each attribute has a definition and a value. You define an attribute by
specifying its data type and dimension. Attributes also have default values that are
assigned when a value is not specified.

Data Type Description

String A string is a sequence of characters enclosed by double
quotes. A string may also contain double quotes, but the
quotes must be immediately preceded by a backslash. A
backslash is represented in a string as \\.
Quotes are not required if a string begins with a letter, and
contains only letters, numbers, dashes (-), and underscores
(_). For example, a string defining a network interface such
as hme0 does not require quotes as it contains only letters
and numbers. However a string defining an IP address
requires quotes, such as: “192.168.100.1” since the IP
contains periods.

Integer Signed integer constants are a sequence of digits from 0 to
9. They may be preceded by a dash, and are interpreted in
base 10. In the example above, the number of times to
retry the online operation of a DiskGroup is defined with
an integer:

Using VERITAS Cluster Server 9/13/01
Page 28

an integer:

static int OnlineRetryLimit = 1

Boolean A boolean is an integer, the possible values of which are 0
(false) and 1 (true). From the main.cf example above,
SNMP is enabled by setting the Enabled attribute to 1 as
follows:

Enabled = 1

Dimension Description

Scalar A scalar has only one value. This is the default dimension.

Vector A vector is an ordered list of values. Each value is indexed
using a positive integer beginning with zero. A set of
brackets ([]) denotes that the dimension is a vector.
Brackets are specified after the attribute name on the
attribute definition. For example, to designate a
dependency between resource types specified in the service
group list, and all instances of the respective resource type:
Dependencies[] = { Mount, Disk, DiskGroup }

Keylist A keylist is an unordered list of strings, and each string is
unique within the list. For example, to designate the list of
systems on which a service group will be started with VCS
(usually at system boot):
AutoStartList = { sysa, sysb, sysc }

Association An association is an unordered list of name-value pairs.
Each pair is separated by an equal sign. A set of braces ({})
denotes that an attribute is an association. Braces are
specified after the attribute name on the attribute definition.
For example, to designate the list of systems on which the
service group is configured to run and the system’s
priorities:
SystemList() = { sysa=1, sysb=2, sysc=3 }

Type dependant attributes
Type dependant attributes are those attributes, which pertain to a particular
resource type. For example the “BlockDevice” attribute is only relevant to the

Using VERITAS Cluster Server 9/13/01
Page 29

Mount resource type. Similarly, the IPAddress attribute pertains to the IP resource
type.

Type independent attributes
Type independent attributes are attributes that apply to all resource types. This
means there is a set of attributes that all agents can understand, regardless of
resource type. These attributes are coded into the agent framework when the agent
is developed. Attributes such as RestartLimit and MonitorInterval can be set for
any resource type. These type independent attributes must still be set on a per
resource type basis, but the agent will understand the values and know how to use
them.

Resource specific attributes
Resource specific attributes are those attributes, which pertain to a given resource
only. These are discrete values that define the “personality” of a given resource.
For example, the IPAgent knows how to use an IPAddress attribute. Actually
setting an IP address is only done within a specific resource definition. Resource
specific attributes are set in the main.cf file

Type specific attributes
Type specific attributes refer to attributes, which are set for all resources of a
specific type. For example, setting MonitorInterval for the IP resource affects all
IP resources. This value would be placed in the types.cf file. In some cases,
attributes can be placed in either location. For example, setting “StartVolumes =
1” in the DiskGroup types.cf entry would default StartVolumes to true for all
DiskGroup resources. Placing the value in main.cf would set StartVolumes on a
per resource value

In the following examples of types.cf entries, we will document several methods
to set type specific attributes.

In the example below, StartVolumes and StopVolumes is set in types.cf. This sets
the default for all DiskGroup resources to automatically start all volumes
contained in a disk group when the disk group is onlined. This is simply a
default. If no value for StartVolumes or StopVolumes is set in main.cf, it will they
will default to true.

type DiskGroup (
 static int NumThreads = 1
 static int OnlineRetryLimit = 1
 static str ArgList[] = { DiskGroup, StartVolumes,
StopVolumes, MonitorOnly }
 NameRule = resource.DiskGroup
 str DiskGroup
 str StartVolumes = 1
 str StopVolumes = 1

Using VERITAS Cluster Server 9/13/01
Page 30

Adding the required lines in main.cf will allow this value to be overridden. In the
next excerpt, the main.cf is used to override the default type specific attribute with
a resource specific attribute

 DiskGroup shared_dg1 (
 DiskGroup = shared_dg1
 StartVolumes = 0
 StopVolumes = 0
)

In the next example, changing the StartVolumes and StopVolumes attributes to
static str disables main.cf from overriding.

type DiskGroup (
 static int NumThreads = 1
 static int OnlineRetryLimit = 1
 static str ArgList[] = { DiskGroup, StartVolumes,
StopVolumes, MonitorOnly }
 NameRule = resource.DiskGroup
 str DiskGroup
 static str StartVolumes = 1
 static str StopVolumes = 1

Local and Global attributes
An attribute whose value applies to all systems is global in scope. An attribute
whose value applies on a per-system basis is local in scope. The “at” operator
(@) indicates the system to which a local value applies. An example of local
attributes can be found in the MultiNICA resource type where IP addresses and
routing options are assigned on a per machine basis.

MultiNICA mnic (
Device@sysa = { le0 = "166.98.16.103", qfe3 = "166.98.16.103" }
Device@sysb = { le0 = "166.98.16.104", qfe3 = "166.98.16.104" }
NetMask = "255.255.255.0"
ArpDelay = 5
Options = "trailers"
RouteOptions@sysa = "default 166.98.16.103 0"
RouteOptions@sysb = "default 166.98.16.104 0"
)

Modifying the Configuration
VCS offers three ways to modify an existing configuration. These can be grouped
as “online” and “offline”, depending on whether VCS is up during the
modification or not. When VCS initials starts up, it reads in a configuration from
disk when it starts up and all other systems build from this “in-memory” copy.
This means that editing the configuration file on disk does not affect the running
cluster. Please carefully review the next section of Configuration File Replication

Using VERITAS Cluster Server 9/13/01
Page 31

Modifying the main.cf file
Modifying the main.cf file with a text editor is probably the overall easiest
method to make large changes or additions to the cluster. Entire group definitions
can be copied and pasted and modified at the administrator’s leisure. The
downside is the cluster must be stopped and restarted to make the changes take
effect. The required changes can be made while the cluster is operational, then
briefly stopped and restarted at a low impact time. One item to note, VCS writes
out any necessary changes to the running main.cf to the on disk version when it
exits, so it is best to copy the copy you wish to modify to another name. For
example, copy main.cf to /var/tmp/main.cf. Then make all necessary edits to this
file. When you are complete, verify the file by running hacf –verify
/var/tmp. The cluster can then be stopped and the /var/tmp/main.cf
copied to /etc/VRTSvcs/conf/config directory and the cluster restarted
on this node.

One other possible method here is to use the hastop –force –all command
to stop the cluster and leave applications running. The cluster can then be restarted
to read in the new configuration.

Modifying the configuration from the command line
Modifying the VCS configuration is done while the cluster is online (it is not
possible to modify the cluster when the cluster is stopped, of HAD is stopped on
the node you are working from).

Modifications are done with standard VCS command line interface (CLI)
commands. These commands are documented in the VCS users Guide under
“Administering VCS from the Command Line”.

Please see the “Sample NFS Configuration “ for an example of adding a Service
Group from the command line.

Modifying the configuration using the GUI
The VCS GUI provides a very powerful, easy to use method to control and
maintain your cluster. Please see the VCS Users Guide, “About the VCS GUI” for
more information on creating GUI users, adding VCS clusters to the Cluster
Monitor configuration and using the VCS GUI.

Adding SNMP traps
VCS inserts SNMP trap information in the main.cf file the first time the
configuration is saved. To enable traps to be sent to a SNMP monitor console, the
monitor console IP and port must be configured and SNMP enabled. The
following main.cf example shows an enabled SNMP configuration

snmp vcs (
 Enabled = 1
 IPAddr = “192.168.1.101”
 Port = 100

Using VERITAS Cluster Server 9/13/01
Page 32

 TrapList = { 1 = "A new system has joined the VCS Cluster",
 2 = "An existing system has changed its state",
 3 = "A service group has changed its state",
 4 = "One or more heartbeat links has gone down",
 5 = "An HA service has done a manual restart",
 6 = "An HA service has been manually idled",
 7 = "An HA service has been successfully started" }
)

Using Proxy Resources
A proxy resource allows a resource configured and monitored in a separate
service group to be mirrored in a service group. This is provided for two reasons:

• Reduce monitoring overhead. Configuring multiple resources pointing at
the same physical device adds unnecessary monitoring overhead. For
example, if multiple service groups use the same NIC device, all
configured resources would monitor the same NIC. Using a proxy
resource allows one Service group to monitor the NIC and this status is
mirrored to the proxy resource.

• Determine status of an OnOff Resource in a different Service Group. VCS
OnOff resources may only exist on one Service Group in a Failover group
configuration.

Examples of using a proxy resource follow in the NFS example.

Configuration File Replication
VCS uses a replicated configuration file to eliminate any single point of failure.
The cluster engine is responsible for distributing the current copy of the
configuration to all running members as well as any new joining members.

From a high level, when a node starts up, it checks if any other node is already up
and running. If so, it will obtain the configuration from the running node. If not,
and the starting node has a valid configuration copy, it will build from its local
copy. Any node starting after would then build from this node. When a node shuts
down, it automatically writes the current running configuration out to disk.

The VCS configuration replication process is a very powerful tool for maintaining
large clusters. However, it does require some additional knowledge to properly
work with the cluster engine during configuration modification.

The following sections will detail the VCS startup and shutdown process and all
possible state transitions during each process.

VCS startup
The following diagram shows the possible state transitions when VCS starts up.

Using VERITAS Cluster Server 9/13/01
Page 33

When a cluster member initially starts up, it transitions to the INITING state. This
is had doing general start-up processing. The system must then determine where
to get its configuration. It first checks if the local on-disk copy is valid. Valid
means the main.cf file passes verification, and there is not a “.stale” file in the
config directory (more on .stale later).

If the config is valid, the system transitions to the
CURRENT_DISCOVER_WAIT state. Here it is looking for another system in
one of the following states: ADMIN_WAIT, LOCAL_BUILD or RUNNING.

• If another system is in ADMIN_WAIT, this system will also transition to
ADMIN_WAIT. The ADMIN_WAIT state is a very rare occurrence and can
only happen in one of two situations:

• When a node is in the middle of a remote build and the node it is building
from dies and there are no other running nodes.

• When doing a local build and hacf reports an error during command file
generation. This is a very corner case, as hacf was already run to
determine the local file is valid. This would typically require an I/O error
to occur while building the local configuration.

• If another system is building the configuration from its own on-disk config
file (LOCAL_BUILD), this system will transition to
CURRENT_PEER_WAIT and wait for the peer system to complete. When

UNKNOWN

CURRENT_DISCOVER_WAIT STALE_DISCOVER_WAIT

ADMIN_WAIT ADMIN_WAIT

LOCAL_BUILD

CURRENT_PEER_WAIT

STALE_PEER_WAIT

STALE_ADMIN_WAIT

REMOTE_BUILD

RUNNING

Peer in
LOCAL_BUILD

Peer in
RUNNING

Peer in
RUNNING

Peer in
LOCAL_BUILD

Peer in
ADMIN_WAIT

Peer in
ADMIN_WAIT

Valid configuration on disk Stale configuration on disk

hastart

Peer starts
LOCAL_BUILD

INITING

Peer in
RUNNING

UNKNOWN

CURRENT_DISCOVER_WAIT STALE_DISCOVER_WAIT

ADMIN_WAIT ADMIN_WAIT

LOCAL_BUILD

CURRENT_PEER_WAIT

STALE_PEER_WAIT

STALE_ADMIN_WAIT

REMOTE_BUILD

RUNNING

Peer in
LOCAL_BUILD

Peer in
RUNNING

Peer in
RUNNING

Peer in
LOCAL_BUILD

Peer in
ADMIN_WAIT

Peer in
ADMIN_WAIT

Valid configuration on disk Stale configuration on disk

hastart

Peer starts
LOCAL_BUILD

INITING

Peer in
RUNNING

Using VERITAS Cluster Server 9/13/01
Page 34

the peer transitions to RUNNING, this system will do a REMOTE_BUILD to
get the configuration from the peer.

• If another system is already in RUNNING state, this system will do a
REMOTE_BUILD and get the configuration from the peer.

If no other systems are in any of the 3 states listed above, this system will
transition to LOCAL_BUILD and generate the cluster config from its own on disk
config file. Other systems coming up after this point will do REMOTE_BUILD.

If the system comes up and determines the local configuration is not valid, i.e.
does not pass verification or has a “.stale” file, the system will shift to
STALE_DISCOVER_WAIT. The system then looks for other systems in the
following states: ADMIN_WAIT, LOCAL_BUILD or RUNNING.

• If another system is in ADMIN_WAIT, this system will also transition to
ADMIN_WAIT

• If another system is building the configuration from its own on-disk config
file (LOCAL_BUILD), this system will transition to STALE_PEER_WAIT
and wait for the peer system to complete. When the peer transitions to
RUNNING, this system will do a REMOTE_BUILD to get the configuration
from the peer.

• If another system is already in RUNNING state, this system will do a
REMOTE_BUILD and get the configuration from the peer.

If no other system is in any of the three states above, this system will transition to
STALE_ADMIN_WAIT. It will remain in this state until another peer comes up
with a valid config file and does a LOCAL_BUILD. This system will then
transition to STALE_PEER_WAIT, wait for the peer to finish, then transition to
REMOTE_BUILD and finally RUNNING.

VCS Shutdown
The following diagram shows the possible state transitions on a VCS shutdown.

Using VERITAS Cluster Server 9/13/01
Page 35

There are three possible ways a system can leave a running cluster: Using hastop,
using hastop –force and the system or HAD faulting.

In the left-most branch, we see an “unexpected exit” and a state of FAULTED.
This is from the peer’s perspective. If a system suddenly stops communicating via
heartbeat, all other systems in the cluster mark its state as faulted. The main.cf
will not be written to disk on this system (any earlier copy will remain)

In the center branch, we have a normal exit. The system leaving informs the
cluster that it is shutting down. It changes state to LEAVING. It then offlines all
service groups running on this node. When all service groups have gone offline,
the current copy of the configuration is written out to main.cf. At this point, the
system transitions to EXITING. The system then shuts down had and the peers
see this system as EXITED.

In the right-most branch, the administrator forcefully shuts down a node or all
nodes with “hastop –force” or “hastop –all –force”. With one node, the system
transitions to an EXITING_FORCIBLY state. All other systems see this
transition. On the local node, all service groups remain online and HAD exits. The
current copy of the configuration is not written to disk.

RUNNING

LEAVING

EXITING

EXITED

EXITING_FORCIBLYFAULTED

hastop hastop -force

Resources offlined &
Agents stopped

Unexpected exit

RUNNING

LEAVING

EXITING

EXITED

EXITING_FORCIBLYFAULTED

hastop hastop -force

Resources offlined &
Agents stopped

Unexpected exit

Using VERITAS Cluster Server 9/13/01
Page 36

Stale configurations
There are several instances where VCS will come up in a stale state. The first is
having a configuration file that is not valid. If running hacf –verify produces any
errors, the file is not valid. The second is opening the configuration for writing
while VCS is running with the GUI or by the command hacf –makerw. When
the config is opened, VCS writes a .stale file to the config directory on each
system. The .stale is removed when the file is once again read-only (Closed with
the GUI or with the command hacf –makero –dump). If a system is
shutdown with the configuration open, the .stale file will remain. Note: VCS 1.3
and above warns the user when attempting to stop the cluster with the
configuration file open for writing.

VCS can ignore the .stale problem by starting had with “hastart –force”. You must
first verify the local main.cf is actually correct for the cluster configuration.

Working examples
 The following examples will clarify the process of main.cf file replication and
state startup issues.

The examples will use the two-node cluster described earlier, called “demo”. The
two systems are ServerA and ServerB.

In the first example, the administrator starts with both systems running, with HAD
stopped on both nodes. The main.cf is modified on SystemA to add new
resources. The user will then start HAD on SystemA. HAD will enter the initing
state. After initialization, it will determine if its local copy of main.cf is valid. If
the administrator performed a verification of the main.cf file as detailed in the
next section, it should be valid. SystemA will also look for .stale file in the config
directory. If the file is valid, and no .stale exists, the engine will then look for
another running system to build from. Since SystemA is the only running system,
it will build from the local config file and transition to running. SystemB can then
be started. It will perform the same set of checks, then build from SystemA.
SystemB writes a copy of the configuration obtained from SystemA when HAD is
stopped or the user explicitly dumps the configuration with the haconf –dump
command (see Modifying the Configuration). If the node were to crash or lose
power prior to this event, the configuration will not be written to disk. This is only
a problem if SystemA were also to lose power. In this scenario, SystemA and
SystemB both have a valid configuration, however SystemA has a more up to date
configuration. If SystemB were allowed to come up first, followed by SystemA,
the older configuration on SystemB would be used. To prevent this, always dump
the running configuration after it is loaded and validated the first time.

For the next example, we will use the same cluster. In this case, the cluster is now
up and running and the user opens the cluster configuration for writing with the
command line or the GUI. This will write a .stale file to all systems running in the
cluster. The .stale is not removed until the cluster configuration is closed and

Using VERITAS Cluster Server 9/13/01
Page 37

written out to disk. If the cluster crashes or powers off (or is forcibly stopped)
before the .stale is removed, it will cause a STALE_ADMIN_WAIT condition the
next time the cluster is started. This is to tell the administrator that changes in
progress were not completed before the cluster was stopped. When the cluster
comes up in STALE_ADMIN_WAIT, the administrator needs to check to main.cf
file to determine if any changes are required. Then verify the config file and start
the node in work with hastart –force.

A third example highlights a common problem seen with administrators not
familiar with configuration verification and replication. SystemA and SystemB
both have VCS stopped. SystemA gets a configuration change, but is not verified.
When SystemA is started, it errors out on the bad configuration. The user does not
check if VCS actually started (hastatus would show STALE_ADMIN_WAIT) and
then starts SystemB, which has a valid, but older configuration. SystemA will
then build from SystemB, essentially overwriting the recent changes. The actual
changes made to main.cf are not lost, they are actually saved to main.cf.previous
on SystemA. The problem remains that the cluster is now running with the wrong
configuration. This can be solved by verifying the main.cf prior to starting VCS
after changes as well as checking to ensure a .stale file is not present.

In the last example, the customer opens the configuration with the GUI and leaves
the configuration open. A power outage takes down both servers. The cluster will
come up in a STALE_ADMIN_WAIT state due to the .stale file in the
configuration directory. This can be cleared by examining the main.cf to see if it
is correct, running the hacf –verify command, and if no errors, starting HAD
with hastart –force.

NFS Sample Configurations

Two node symmetrical NFS configuration
The following example will add a second NFS service Group, NFS_Group2. This
group will be configured to normally run on the second system in the cluster. The
systems are configured as follows:

• Servers: ServerA and ServerB

• Storage: One disk group, shared2

• File System: /source-code

• IP address: 192.168.1.4 IP_nfs2

• Public interface: hme0

• ServerB is primary location to start the NFS_Group2

Using VERITAS Cluster Server 9/13/01
Page 38

Example main.cf file
Comments in the example are preceded with “#”. The second service group
definition begins after the first and is preceded with the keyword “group”

include "types.cf"
cluster HA-NFS (

)

system ServerA

system ServerB

snmp vcs

group NFS_Group1 (
 SystemList = { ServerA, ServerB }

 AutoStartList = { ServerA }
)

 DiskGroup DG_shared1 (
 DiskGroup = shared1
)

 IP IP_nfs1 (
 Device = hme0
 Address = "192.168.1.3"
)

 Mount Mount_home (
 MountPoint = "/export/home"
 BlockDevice = "/dev/vx/dsk/shared1/home_vol"
 FSType = vxfs
 MountOpt = rw
)

 NFS NFS_group1_16 (
)

 NIC NIC_group1_hme0 (
 Device = hme0
 NetworkType = ether
)

 Share Share_home (
 PathName = "/export/home"
)

IP_nfs1 requires Share_home
 IP_nfs1 requires NIC_group1__hme0
 Mount_home requires DG_shared1
 Share_home requires NFS_group1_16

Share_home requires Mount_home

Now we can begin the second service group definition
group NFS_Group2 (

Using VERITAS Cluster Server 9/13/01
Page 39

 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerB }
)

 DiskGroup DG_shared2 (
 DiskGroup = shared2
)

 # Note the second VxVM DiskGroup. A disk group may only exist in a single
failover

#service group, so a second disk group is required.
 IP IP_nfs2 (
 Device = hme0
 Address = "192.168.1.4"
)

 Mount Mount_sourcecode (
 MountPoint = "/export/sourcecode"
 BlockDevice = "/dev/vx/dsk/shared2/code_vol"
 FSType = vxfs
 MountOpt = rw
)

 NFS NFS_group2_16 (
)

 NIC NIC_group2_hme0 (
 Device = hme0
 NetworkType = ether
)

 Share Share_sourcecode (
 PathName = "/export/sourcecode"
)

 IP_nfs2 requires Share_sourcecode
 IP_nfs2 requires NIC_group2_hme0

Mount_sourcecode requires DG_shared2
 Share_sourcecode requires NFS_group2_16
 Share_sourcecode requires Mount_sourcecode

Command line modification example
The following example will show the steps required to add the second service
group shown above from the VCS command line

Open the config for writing
haconf –makerw
Add the new ServiceGroup
hagrp –add NFS_group2
hagrp -modify NFS_group2 SystemList SystemA SystemB
hagrp -modify NFS_group2 AutoStartList SystemB

Add the resources
hares –add DG_shared2 DiskGroup NFS_group2

Using VERITAS Cluster Server 9/13/01
Page 40

hares –modify DG_shared2 DiskGroup shared2
hares –add IP_nfs2 IP NFS_group2
hares –modify IP_nfs2 Device hme0
hares –modify IP_nfs2 Address “192.168.1.4”
hares –modify IP_nfs2 Enabled 1

hares –add Mount_sourcecode Mount NFS_group2
hares –modify Mount_sourcecode MountPoint
“/export/sourcecode”
hares –modify Mount_sourcecode BlockDevice
“/dev/vx/dsk/shared2/code_vol”
hares –modify Mount_sourcecode MountOpt rw
hares –modify Mount_sourcecode FSType vxfs
hares –modify Mount_sourcecode Enabled 1

hares –add Share_sourcecode Share NFS_group2
hares –modify Share_sourcecode OfflineNFSRestart 0
hares –modify Share_sourcecode Options “ -o anon=0 ”
hares –modify Share_sourcecode PathName
“/export/sourcecode”
hares –modify Share_sourcecode Enabled 1

hares –add NFS_group2_16 NFS NFS_group2
hares –modify NFS_group2_16 Enabled 1

hares –add NIC_group2_hme0 NIC NFS_group2
hares –modify NIC_group2_hme0 Device hme0
hares –modify NIC_group2_hme0 NetworkType ether
hares –modify NIC_group2_hme0 Enabled 1

Create the dependencies
Hares –link IP_nfs2 Share_sourcecode
Hares –link IP_nfs2 NIC_group2_hme0
Hares –link Mount_sourcecode DG_shared2
Hares –link Share_sourcecode NFS_group2_16
Hares –link Share_sourcecode Mount_sourcecode

Close the configuration and push the changes
haconf –dump –makero

Using a NIC proxy
The following main.cf example will show using a NIC resource in one group and
a proxy resource in the second group. Notice the second group requires statement
points to the proxy. Also notice the actual hme0 device is used in the device line
for the IP resource.

Using VERITAS Cluster Server 9/13/01
Page 41

Example main.cf file

include "types.cf"
cluster HA-NFS (

system ServerA

system ServerB

snmp vcs

group NFS_Group1 (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup ...
 Mount ...
 NFS ...
 Share ...

 IP IP_nfs1 (
 Device = hme0
 Address = "192.168.1.3"
)

 NIC NIC_group1_hme0 (
 Device = hme0
 NetworkType = ether
)

 Requirements ...

group NFS_Group2 (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerB }
)

 DiskGroup ...
 Mount ...
 NFS ...
 Share ...

 IP IP_nfs2 (
 Device = hme0
 Address = "192.168.1.4"
)

 Proxy NIC_Proxy (
 TargetResName = NIC_group1_hme0

Using VERITAS Cluster Server 9/13/01
Page 42

 IP_nfs2 requires Share_sourcecode
 IP_nfs2 requires NIC_Proxy
 Other requirements

Configuring a parallel NIC group and using Proxy
The example above has several important limitations:

• Deleting or modifying the first group can effect the second group

• The proxy is only visible to systems in the system list for the first group. If
later groups are added along with additional nodes, they will be unable to
use the NIC_proxy

The following main.cf example will add a new group that runs as a parallel group
on all systems in the cluster. Since each server needs NFS daemons running, the
NFS resource will be moved here as well. This example will also show the use of
the Phantom resource. The phantom resource is used to allow a group with no On-
Off resources.

Example main.cf

include "types.cf"
cluster HA-NFS (

system ServerA

system ServerB

snmp vcs

group Parallel_Service (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA, ServerB }
 Parallel = 1
)

 NIC NIC_Public1 (
 Device@ServerA = hme0
 Device@ServerB = hme0
 NetworkType = ether
)

 NFS NFS_16 (

)

 Phantom NIC_NFS_Phantom (
)

group NFS_Group1 (

Using VERITAS Cluster Server 9/13/01
Page 43

 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup ...
 Mount ...
 Share ...

 IP IP_nfs1 (
 Device = hme0
 Address = "192.168.1.3"
)

 Proxy NFS_Proxy_Group1 (
 TargetResName = NFS_16
)

 Proxy NIC_Proxy_Group1 (
 TargetResName = NIC_Public1
)

 Requirements ...
 IP_nfs1 requires NIC_Proxy_Group1
 Share_home requires NFS_Proxy_Group1
 Other requirements

group NFS_Group2 (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerB }
)

 DiskGroup ...
 Mount ...
 NFS ...
 Share ...

 IP IP_nfs2 (
 Device = hme0
 Address = "192.168.1.4"
)

 Proxy NFS_Proxy_Group2 (
 TargetResName = NFS_16
)

 Proxy NIC_Proxy_Group2 (
 TargetResName = NIC_Public1

 IP_nfs2 requires NIC_Proxy_Group2

Share_sourcecode requires NFS_Proxy_Group2

Using VERITAS Cluster Server 9/13/01
Page 44

 Other requirements

Special storage considerations for NFS Service
NFS servers and clients use the concept of a “filehandle”. This concept is based
on an NFS design principal that the client is unaware of the underlying layout or
architecture of an NFS server’s file system. When a client wishes to access a file,
the server responds with a filehandle. This filehandle is used for all subsequent
access to the file. For example, a client has the /export/home file system NFS
mounted on /home and is currently in /home/user. The client system wishes to
open the file /home/user/letter. The client NFS process issues an NFS lookup
procedure call to the server for the file letter. The server responds with a
filehandle that the client can use to access letter. This filehandle is considered an
“opaque data type” to the client. The client has no visibility into what the
filehandle contains, it simply knows to use this handle when it wishes to access
letter. To the server, the filehandle has a very specific meaning. The filehandle
encodes all information necessary to access a specific piece of data on the server.
Typical NFS file handles contain the major and minor number of the file system,
the inode number and the inode generation number (a sequential number assigned
when an inode is allocated to a file. This is to prevent a client from mistakenly
accessing a file by inode number that has been deleted and the inode reused to
point to a new file). The NFS filehandle describes to the server one unique file on
the entire server. If a client accesses the server using a filehandle that does not
appear to work, such as major or minor number that are different than what is
available on the server, or an inode number where the inode generation number is
incorrect, the server will reply with a “Stale NFS filehandle” error. Many sites
have seen this error after a full restore of a NFS exported file system. In this
scenario, the files from a full file level restore are written in a new order with new
inode and inode generation numbers for all files. In this scenario, all clients must
unmount the file system and re-mount to receive new filehandle assignments from
the server.

Rebooting an NFS server has no effect on an NFS client other than an outage
while the server boots. Once the server is back, the client mounted file systems are
accessible with the same file handles.

From a cluster perspective, a file system failover must look exactly like a very
rapid server reboot. In order for this to occur, a filehandle valid on one server
must point to the identical file on the peer server. Within a given file system
located on shared storage this is guaranteed as inode and inode generation must
match since they are read out of the same storage following a failover. The
problem exists with major and minor numbers used by Unix to access the disks or
volumes used for the storage. From a straight disk perspective, different
controllers would use different minor numbers. If two servers in a cluster do not
have exactly matching controller and slot layout, this can be a problem.

Using VERITAS Cluster Server 9/13/01
Page 45

This problem is greatly mitigated through the use of VERITAS Volume Manager.
VxVM abstracts the data from the physical storage. In this case, the Unix major
number is a pointer to VxVM and the minor number to a volume within a disk
group. Problems arise in two situations. The first is differing major numbers. This
typically occurs when the VxVM, VxFS and VCS are installed in different orders.
Both VxVM and LLT/GAB use major numbers assigned by Solaris during
software installation to create device entries. Installing in different orders will
cause a mismatch in major number. Another cause of differing major numbers is
different packages installed on each system prior to installing VxVM. Differing
minor numbers within VxVM setup is rare and usually only happens when a
server has a large number of local disk groups and volumes prior to beginning
setup as a cluster peer.

Before beginning VCS NFS server configuration, verify file system major and
minor numbers match between servers. On VxVM this will require importing the
disk group on one server, checking major and minor, deporting the disk group
then repeating the process on the second server.

If any problems arise, refer to the VCS Installation Guide, Preparing NFS
Services.

Oracle sample configurations
The following examples will show a two-node cluster running a single Oracle
instance in an asymmetrical configuration and a 2 Oracle instance symmetrical
configuration. It will also show the required changes to the Oracle configuration
file such as listener.ora and tnsnames.ora.

Oracle setup
As described above, the best method to configure a complex application like
Oracle is to first configure one system to run Oracle properly and test. After
successful test of the database on one server, import the shared storage and
configure the second system identically. The most common configuration
mistakes in VCS Oracle are system configuration files. On Unix these are
typically /etc/system (/stand/system on HP), /etc/passwd,
/etc/shadow and /etc/group.

Oracle must also be configured to operate in the cluster environment. The main
Oracle setup task is to ensure all data required by the database resides on shared
storage. During failover the second server must be able to access all table spaces,
data files, control files, logs, etc. The Oracle listener must also be modified to
work in the cluster. The changes typically required are
$ORACLE_HOME/network/admin/tnsnames.ora and
$ORACLE_HOME/network/admin/listener.ora. These files must be modified to
use the hostname and IP address if the virtual server rather than a particular
physical server. Remember to take this in to account during Oracle setup and

Using VERITAS Cluster Server 9/13/01
Page 46

testing. If you are using the physical address of a server, the listener control files
must be changed during testing on the second server. If you use the high
availability IP address selected for the Oracle service group, you will need to
manually configure this address up on each machine during testing.

Many customers set up multiple Oracle users to simplify administration of
multiple databases. For example, rather than logging in as “oracle” and specifying
the prod SID, you can create an oraprod user with all required environment
variables set to point to the proper Oracle home and SID

Always plan for expansion. Databases tend to proliferate. When you set up a
single asymmetrical instance, plan ahead for the cluster to support multiple
instances in the near future.

Oracle Enterprise Agent installation
To control Oracle in a VCS environment, the customer must purchase and install
the VCS Enterprise Agent for Oracle. This package actually contains two agents,
the OracleAgent to control the Oracle database and the SqlnetAgent to control the
Oracle listener. Follow the instructions in the Enterprise Agent for Oracle
Installation and Configuration Guide for details.

Single instance configuration
The following example will show a single instance asymmetric failover
configuration for Oracle 8i. The configuration assumes the following system
configurations

• Cluster HA-Oracle

• Servers: ServerA and ServerB

• Service group ORA_PROD_Group

• Storage: One disk group, DG_oraprod

• File Systems: /prod/u01 and /prod/u02

• IP address: 192.168.1.6 IP_oraprod

• Public interface: hme0

• ServerA is primary location to start the ORA_PROD_Group

• The Listener starts before the Oracle database to allow Multi Threaded Server
usage.

• DNS mapping for 192.168.1.6 maps to host “oraprod”

Using VERITAS Cluster Server 9/13/01
Page 47

Example main.cf
include "types.cf"
include "OracleTypes.cf"

cluster HA-Oracle (
)
system SystemA
system SystemB

snmp vcs

group ORA_PROD_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup DG_oraprod (
 DiskGroup = ora_prod_dg
 StartVolumes = 0
 StopVolumes = 0
)

 IP IP_oraprod (
 Device = hme0
 Address = "192.168.1.6"
)

 Mount Mount_oraprod_u01 (
 MountPoint = "/prod/u01"
 BlockDevice = "/dev/vx/dsk/ora_prod_dg/u01-vol"
 FSType = vxfs
 MountOpt = rw
)

 Mount Mount_oraprod_u02 (
 MountPoint = "/prod/u02"
 BlockDevice = "/dev/vx/dsk/ora_prod_dg/u02-vol"
 FSType = vxfs
 MountOpt = rw
)

 NIC NIC_oraprod_hme0 (
 Device = hme0
 NetworkType = ether
)

 Oracle ORA_oraprod (
 Critical = 1
 Sid = PROD
 Owner = oraprod
 Home = "/prod/u01/oracle/product/8.1.5"
 Pfile = "/prod/u01/oracle/admin/pfile/initPROD.ora"
)

 Sqlnet LSNR_oraprod_lsnr (

Using VERITAS Cluster Server 9/13/01
Page 48

 Owner = oraprod
 Home = "/prod/u01/oracle/product/8.1.5"
 TnsAdmin = "/prod/u01/oracle/network/admin"
 Listener = LISTENER_PROD
)

 Volume Vol_oraprod_vol1 (
 Volume = "u01-vol"
 DiskGroup = "ora_prod_dg"
)

 Volume Vol_oraprod_vol2 (
 Volume = "u01-vo2"
 DiskGroup = "ora_prod_dg"
)

Vol_oraprod_vol1 requires DG_oraprod
Vol_oraprod_vol2 requires DG_oraprod
Mount_oraprod_u01 requires Vol_oraprod_vol1
Mount_oraprod_u02 requires Vol_oraprod_vol3
IP_oraprod requires NIC_oraprod_hme0
LSNR_oraprod_lsnr requires Mount_oraprod_u01
LSNR_oraprod_lsnr requires Mount_oraprod_u02
LSNR_oraprod_lsnr requires IP_oraprod
ORA_oraprod requires LSNR_oraprod_lsnr

Oracle listener.ora configuration
Listener.ora modifications for a single instance configuration are quite simple.
Edit the “Host=” line in the ADDRESS_LIST section and add the name of the
high availability address for the service group, in this case, “oraprod”.

LISTENER_PROD =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)(Host=oraprod)(Port=1521))
)
SID_LIST_LISTENER_PROD=
 (SID_LIST =
 (SID_DESC=
 (GLOBAL_DBNAME=db01.)
 (ORACLE_HOME= /u01/oracle/product/8.1.5)
 (SID_NAME = PROD)
)
 (SID_DESC=
 (SID_NAME = extproc)
 (ORACLE_HOME= /u01/oracle/product/8.1.5)
 (PROGRAM= extproc)
)
)
STARTUP_WAIT_TIME_LISTENER_PROD =0
CONNECT_TIMEOUT_LISTENER_PROD = 10
TRACE_LEVEL_LISTENER_PROD = OFF

Using VERITAS Cluster Server 9/13/01
Page 49

Adding deep level testing
Deep level testing gives VCS the ability to test Oracle and the Listener from
closer to a real user perspective. The OracleAgent will log into the database and
write data to a table, logout, log back in and test that it can read from the same
table. The SqlnetAgent will test that it can actually connect to the listener and
access the database.

Oracle changes
To configure deep level testing of the database, a low privilege user must be
defined that can create and modify a table. The following is documented in the
Sqltest.pl file in the $VCS_HOME/bin/Oracle directory.

The following test updates a row "tstamp" with the latest value of the Oracle
internal function SYSDATE

A prerequisite for this test is that a user/password/table has been created before
enabling the script by defining the VCS attributes User/Pword/Table/MonScript
for the Oracle resource.

This task can be accomplished by the following SQL statements as DB-admin:

 SVRMGR> connect internal
 SVRMGR> create user <User>
 2> identified by <Pword>
 3> default tablespace USERS
 4> temporary tablespace USERS
 5> quota 100K on USERS;

 USERS is the tablespace name present at all standard Oracle Installations.

 It might be replaced by any other tablespace for the specific installation.

 (To get a list of valid tablespaces use: select * from sys.dba_tablespaces;)

 SVRMGR> grant create session to <User>;
 SVRMGR> create table <User>.<Table> (tstamp date);
 SVRMGR> create table <User>.<Table> (tstamp date);
 SVRMGR> insert into <User>.<Table> (tstamp) values (SYSDATE);

 The name of the row "tstamp" should match the one of the update statement
below!

 To test DB-setup use:

 SVRMGR> disconnect
 SVRMGR> connect <User>/<Pword>
 SVRMGR> update <User>.<Table> set (tstamp) = SYSDATE;
 SVRMGR> select TO_CHAR(tstamp, 'MON DD, YYYY HH:MI:SS AM')tstamp
 2> from <User>.<Table>;

Using VERITAS Cluster Server 9/13/01
Page 50

 SVRMGR> exit

 If you received the correct timestamp the in depth testing can be enabled

VCS Configuration changes
To enable VCS to perform deep level Oracle testing, you must define the Oracle
user and password and the tablespace used for testing. The following is an
example of the modifications to main.cf for the Oracle and Sqlnet resources:

Oracle ORA_oraprod (
 Critical = 1
 Sid = PROD
 Owner = oraprod
 Home = "/u01/oracle/product/8.1.5"
 Pfile = "/u01/oracle/admin/pfile/initPROD.ora"
)

User = "testuser"
Pword = "vcstest"
Table = "USERS"
Monscript = "/opt/VRTSvcs/bin/Oracle/SqlTest.pl"

 Sqlnet PROD_Listener (
 Owner = oraprod
 Home = "/u01/oracle/product/8.1.5"
 TnsAdmin = "/u01/oracle/network/admin"
 Listener = LISTENER_PROD

Monscript = "/opt/VRTSvcs/bin/Sqlnet/LsnrTest.pl"
)

Multiple Instance configuration
Multiple Oracle instances are really not difficult, however it does involve slightly
more effort to setup. As with all applications, it is best to test the operation of the
app before placing in VCS control. In this case, make sure you have modified all
proper system files, such as /etc/system, /etc/passwd, /etc/group and /etc/shadow
to support multiple databases. Pay particular attention to system requirements like
physical memory and shared memory segment availability. Also ensure a single
system is capable of sustaining a multiple instance load in the event of a server
failure and extended operation on the backup server.

The following example will add a second instance for symmetrical failover. This
configuration adds the following

• Service group ORA_MKTG_Group

• Storage: One disk group, DG_oramktg

• File Systems: /mktg/u01 and /mktg/u02

• IP address: 192.168.1.6 IP_oramktg

Using VERITAS Cluster Server 9/13/01
Page 51

• Public interface: hme0

• ServerB is primary location to start the ORA_MKTG_Group

• The Listener starts before the Oracle database to allow Multi Threaded Server
usage.

• DNS mapping for 192.168.1.7 maps to host “oramktg”

• Parallel NIC group and NIC proxy

Example main.cf
include "types.cf"
include "OracleTypes.cf"

cluster HA-Oracle (
)
system SystemA
system SystemB

snmp vcs

group ORA_PROD_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup DG_oraprod (
 DiskGroup = ora_prod_dg
 StartVolumes = 0
 StopVolumes = 0
)

 IP IP_oraprod (
 Device = hme0
 Address = "192.168.1.6"
)

 Mount Mount_oraprod_u01 (
 MountPoint = "/prod/u01"
 BlockDevice = "/dev/vx/dsk/ora_prod_dg/u01-vol"
 FSType = vxfs
 MountOpt = rw
)

 Mount Mount_oraprod_u02 (
 MountPoint = "/prod/u02"
 BlockDevice = "/dev/vx/dsk/ora_prod_dg/u02-vol"
 FSType = vxfs
 MountOpt = rw
)

 Oracle ORA_oraprod (

Using VERITAS Cluster Server 9/13/01
Page 52

 Critical = 1
 Sid = PROD
 Owner = oraprod
 Home = "/prod/u01/oracle/product/8.1.5"
 Pfile = "/u01/oracle/admin/pfile/initPROD.ora"
)

 Proxy NIC_prod_proxy (
 TargetResName = NIC_Public1
)

 Sqlnet LSNR_oraprod_lsnr (
 Owner = oraprod
 Home = "/prod/u01/oracle/product/8.1.5"
 TnsAdmin = "/prod/u01/oracle/network/admin"
 Listener = LISTENER_PROD
)

 Volume Vol_oraprod_vol1 (
 Volume = "u01-vol"
 DiskGroup = "ora_prod_dg"
)

 Volume Vol_oraprod_vol2 (
 Volume = "u01-vo2"
 DiskGroup = "ora_prod_dg"
)

Vol_oraprod_vol1 requires DG_oraprod
Vol_oraprod_vol2 requires DG_oraprod
Mount_oraprod_u01 requires Vol_oraprod_vol1
Mount_oraprod_u02 requires Vol_oraprod_vol3
IP_oraprod requires NIC_prod_proxy
LSNR_oraprod_lsnr requires Vol_oraprod_vol1
LSNR_oraprod_lsnr requires Vol_oraprod_vol2
LSNR_oraprod_lsnr requires IP_oraprod
ORA_oraprod requires LSNR_oraprod_lsnr

group ORA_MKTG_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerB }
)

 DiskGroup DG_oramktg (
 DiskGroup = ora_mktg_dg
 StartVolumes = 0
 StopVolumes = 0
)

 IP IP_oramktg (
 Device = hme0
 Address = "192.168.1.7"
)

Using VERITAS Cluster Server 9/13/01
Page 53

 Proxy NIC_mktg_proxy (
 TargetResName = NIC_Public1
)

 Mount Mount_oramktg_u01 (
 MountPoint = "/mktg/u01"
 BlockDevice = "/dev/vx/dsk/ora_mktg_dg/u01-vol"
 FSType = vxfs
 MountOpt = rw
)

 Mount Mount_oramktg_u02 (
 MountPoint = "/mktg/u02"
 BlockDevice = "/dev/vx/dsk/ora_mktg_dg/u02-vol"
 FSType = vxfs
 MountOpt = rw
)

 Oracle ORA_oramktg (
 Critical = 1
 Sid = MKTG
 Owner = oramktg
 Home = "/mktg/u01/oracle/product/8.1.5"
 Pfile = "/mktg/u01/oracle/admin/pfile/initMKTG.ora"
)

 Sqlnet LSNR_oraprod_lsnr (
 Owner = oramktg
 Home = "/mktg/u01/oracle/product/8.1.5"
 TnsAdmin = "/mktg/u01/oracle/network/admin"
 Listener = LISTENER_MKTG
)

 Volume Vol_oramktg_vol1 (
 Volume = "u01-vol"
 DiskGroup = "ora_mktg_dg"
)

 Volume Vol_oramktg_vol2 (
 Volume = "u01-vo2"
 DiskGroup = "ora_mktg_dg"
)

Vol_oramktg_vol1 requires DG_oramktg
Vol_oramktg_vol2 requires DG_oramktg
Mount_oramktg_u01 requires Vol_oramktg_vol1
Mount_oramktg_u02 requires Vol_oramktg_vol2
IP_oramktg requires NIC_mktg_proxy
LSNR_oramktg_lsnr requires Mount_oramktg_u01
LSNR_oramktg_lsnr requires Mount_oramktg_u02
LSNR_oramktg_lsnr requires IP_oramktg
ORA_oramktg requires LSNR_oramktg_lsnr

group Parallel_Service (

Using VERITAS Cluster Server 9/13/01
Page 54

 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA, ServerB }
 Parallel = 1
)

 NIC NIC_Public1 (
 Device@ServerA = hme0
 Device@ServerB = hme0
 NetworkType = ether
)

 Phantom NIC_Phantom (
)

)

Oracle listener.ora configuration
In order to support multiple instances running on different locations, the Oracle
Listener configuration must be modified. Supporting multiple independent
(capable of running on any server in any combination) requires individual
listeners per database. This requires changes to listener.ora and tnsnames.ora.

The listener.ora configuration will now list two independent listener
configurations.

LISTENER_PROD =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)(Host=oraprod)(Port=1521))
)
SID_LIST_LISTENER_PROD=
 (SID_LIST =
 (SID_DESC=
 (GLOBAL_DBNAME=db01.)
 (ORACLE_HOME= /prod/u01/oracle/product/8.1.5)
 (SID_NAME = PROD)
)
 (SID_DESC=
 (SID_NAME = extproc)
 (ORACLE_HOME= /prod/u01/oracle/product/8.1.5)
 (PROGRAM= extproc)
)
)
STARTUP_WAIT_TIME_LISTENER_PROD =0
CONNECT_TIMEOUT_LISTENER_PROD = 10
TRACE_LEVEL_LISTENER_PROD = OFF

LISTENER_MKTG =
 (ADDRESS_LIST =
 (ADDRESS=(PROTOCOL= TCP)(Host=oramktg)(Port=1521))
)

Using VERITAS Cluster Server 9/13/01
Page 55

SID_LIST_LISTENER_MKTG=
 (SID_LIST =
 (SID_DESC=
 (GLOBAL_DBNAME=db01.)
 (ORACLE_HOME= /mktg/u01/oracle/product/8.1.5)
 (SID_NAME = MKTG)
)
 (SID_DESC=
 (SID_NAME = extproc)
 (ORACLE_HOME= /mktg/u01/oracle/product/8.1.5)
 (PROGRAM= extproc)
)
)
STARTUP_WAIT_TIME_LISTENER_MKTG =0
CONNECT_TIMEOUT_LISTENER_MKTG = 10
TRACE_LEVEL_LISTENER_MKTG = OFF

Location of Oracle Binaries
Where to install Oracle binaries in a cluster configuration is an ongoing question
that has no “correct” answer. Placing Oracle binaries on shared storage has its
advantages as does placing the binaries on local system disk. The following
section will attempt to detail the pros and cons of each.

Oracle binaries on shared disk
Placing Oracle binaries on shared disk simplifies setting up a given system in a
multinode cluster to run an instance. In this way, each database service group is
completely self-contained. The shared storage contains the oracle binaries, all
control and parameter files and all table spaces. This means an instance can be
moved to a new server in the cluster at will, as soon as it is a part of the cluster,
has its required system file changes made and assumes it can see the storage. In a
multinode configuration running multiple versions of Oracle, this is many times
the best way to go. Imagine a 4-node cluster, supporting 3 database
instances/Service Groups, each at a different version. Placing the binaries on
shared storage would require maintaining 3 copies of oracle (one per Service
Group). Placing the binaries on local disk would require maintaining 12 copies (4
servers X 3 versions)

The downside to this approach means each instance must be maintained
separately and rolling upgrades are not possible. Since the binaries are contained
in the Service Group, it is not possible to update the Oracle version on one system
then bring the database online, then upgrade the other systems.

Oracle binaries on local disk
Placing binaries on local disk has its own advantages and disadvantages as well.
One key benefit to local disk is the ability to do a rolling patch or version upgrade
of Oracle. Imagine a two-node cluster running Oracle 8.1.5. The customer wishes
to go to Oracle 8.1.6. With the database running on one system, the customer may
be able to upgrade/install the new version on the offline system. The database can

Using VERITAS Cluster Server 9/13/01
Page 56

then be switched over with absolute minimum downtime to the new version. The
second server can then be upgraded. This method may not work in all cases,
depending on changes to the database structure, but may provide some rolling
upgrade capability.

The issue with this method is scalability. As the number of instances, versions and
servers grows, the number of copies of software to maintain grows out of
proportion to the benefits.

What is the correct choice?
The correct location for Oracle binaries is whatever fits the needs of the
environment. The customer will need to weigh all pros and cons of each method
and make the correct choice for their needs.

Using IPMultiNIC and MultiNICA
The MultiNICA resource is a special configuration to allow “in box failover” of a
faulted network connection. Upon detecting a failure of a configured network
interface, VCS will move the IP address to a second standby interface in the same
system. This can be far less costly in terms of service outage than a complete
service group failover to a peer in many cases. It must be noted that there is still
an interruption of service between the time a network card or cable fails, detection
of the failure and migration to a new interface. The MultiNICA resource also
keeps a base address up on an interface, essentially providing a highly available
maintenance address.

The IPMultiNIC resource is a special IP resource designed to sit on top of a
MultiNICA resource. Just as IP sits on an NIC resource, IPMultiNIC can only sit
on a MultiNICA resource. IPMultiNIC configures and moves the HA IP address
between hosts

Configuring IPMultiNIC and MultiNICA resource pairs
In a normal VCS configuration, the IP resource is dependent on the NIC resource.
To use a high availability NIC configuration, VCS is configured to use the
IPMultiNIC resource depending on the MultiNICA resource. The MultiNICA
resource is responsible for maintaining the base IP address up on one of the
assigned interfaces, and moving this IP on the event of a failure to another
interface. The IPMultiNIC resource actually configures up the floating VCS IP
address on the physical interface maintained by MultiNICA.

In the following example, two machines, ServerA and ServerB, each have a pair
of network interfaces, qfe1 and qfe5. The two interfaces have the same base,
or physical, IP address. This base address is moved between interfaces during a
failure. Only one interface is ever active at a time. The addresses assigned to the
interface pairs differ for each host. Since each host will have a physical address up
and assigned to an interface during normal operation (base address, not HA

Using VERITAS Cluster Server 9/13/01
Page 57

address) the addresses must be different. Note the lines beginning at
Device@ServerA; the use of different physical addresses shows how to localize
an attribute for a particular host.

In the event of a NIC failure on sysa, the physical IP address and the logical IP
addresses will fail over from qfe1 to qfe5. In the event that qfe5 fails, the
address will fail back to qfe1 if qfe1 has been reconnected. However, if
both the NICs on sysa are disconnected, the MultiNICA and IPMultiNIC
resources work in tandem to fault the group on sysa. The entire group now fails
over to sysb.

Example main.cf
 include "types.cf"
include "OracleTypes.cf"

cluster HA-Oracle (
)
system SystemA
system SystemB

snmp vcs

group ORA_PROD_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

 DiskGroup ...
 Mount ...
 Mount ...
 Oracle ...
 Sqlnet ...
 Volume ...
 Volume ...

 IPMultiNIC IP_oraprod (
 Address = "192.168.1.6"
 NetMask = "255.255.255.0"
 MultiNICResName = oramnic
 Options = "trailers"
)

MultiNICA oramnic (
Device@SystemA = { qfe0 = "192.168.1.1", qfe5 =
"192.168.1.1" }
Device@SystemB = { qfe0 = "192.168.1.2", qfe5 =
"192.168.1.2" }

 NetMask = "255.255.255.0"
 Options = "trailers"
)

Using VERITAS Cluster Server 9/13/01
Page 58

IP_oraprod requires oramnic

Notes about Using MultiNICA Agent
If all the NICs configured in the Device attribute are down, the MultiNICA
agent will fault the resource after a 2-3 minute interval. This delay occurs because
the MultiNICA agent tests the failed NIC several times before marking the
resource offline. Messages recorded in the engine log during failover provide a
detailed description of the events that take place during failover. (The engine log
is located at /var/VRTSvcs/log/engine_A.log).

The MultiNICA agent supports only one active NIC on one IP subnet; the agent
will not work with multiple active NICs.

The primary NIC must be configured before VCS is started. You can use the
ifconfig(1M) command to configure it manually, or edit the file
/etc/hostname.nic (on Solaris) so that configuration of the NIC
occurs automatically when the system boots. VCS plumbs and configures the
backup NIC, so it does not require the file /etc/hostname.nic.

Using a Parallel MultiNICA group and Proxy
The following example will show the use of MultiNICA, IPMultiNIC and Proxy
together. In this example, the customer wants to use IPMultiNIC in each service
group. They also want each service group to look identical from a configuration
standpoint. This example will configure a parallel group on each server consisting
of the MultiNICA resource and a Phantom resource and multiple Failover groups
with a Proxy to the MultiNICA. Note the IPMultiNIC resource attribute
MultiNICResName = mnic always points to the physical MultiNICA
resource and not the proxy.

The parallel service group containing MultiNICA resources ensures there is a
local instance of the MultiNICA resource running on the box.

Example main.cf
include "types.cf"
include "OracleTypes.cf"

cluster HA-Oracle (
)
system SystemA
system SystemB

snmp vcs

group ORA_PROD_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA }
)

Using VERITAS Cluster Server 9/13/01
Page 59

 IPMultiNIC IP_oraprod (
 Device = MNIC_Public1
 Address = "192.168.1.6"
)

Proxy MNIC_prod_proxy (
 TargetResName = MNIC_Public1
)

DiskGroup ...

 Mount Mount_oraprod_u01 ...(
 Mount Mount_oraprod_u02 ...
 Oracle ORA_oraprod ...
 Sqlnet LSNR_oraprod_lsnr ...
 Volume Vol_oraprod_vol1 ...
 Volume Vol_oraprod_vol2 ...

IP_oraprod requires MNIC_prod_proxy
Other requirements

group ORA_MKTG_Group (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerB }
)

 IPMultiNIC IP_oramktg (
 Device = MNIC_Public1
 Address = "192.168.1.7"
)

 Proxy MNIC_mktg_proxy (
 TargetResName = MNIC_Public1
)

DiskGroup ...
 Mount Mount_oramktg_u01 ...(
 Mount Mount_oramktg_u02 ...
 Oracle ORA_oramktg ...
 Sqlnet LSNR_oramktg_lsnr ...
 Volume Vol_oramktg_vol1 ...
 Volume Vol_oramktg_vol2 ...

IP_oramktg requires MNIC_mktg_proxy
Other requirements

group Parallel_Service (
 SystemList = { ServerA, ServerB }
 AutoStartList = { ServerA, ServerB }
 Parallel = 1
)
 MultiNICA MNIC_Public1 (

Device@SystemA = { qfe0 = "192.168.1.1", qfe5 =
"192.168.1.1" }
Device@SystemB = { qfe0 = "192.168.1.2", qfe5 =
"192.168.1.2" }

 NetMask = "255.255.255.0"

Using VERITAS Cluster Server 9/13/01
Page 60

 Options = "trailers"
)

 Phantom NIC_Phantom (
)
)

Altering Agent/Resource Type Behavior
Altering behavior of agents is done at the resource type level. For example,
modifying how often a resource is monitored while online or offline is set on a per
resource type basis.

A large number of attributes are available that are understood by all agents (type
independent) and allow tuning the behavior of resource types. This section will
list the most common:

Common resource type attributes

ConfInterval
ConfInterval determines how long a resource must remain online to be considered
“healthy”. When a resource has remained online for the specified time (in
seconds), previous faults and restart attempts are ignored by the agent. (See
ToleranceLimit and RestartLimit attributes for details.) For example, an
ApacheAgent is configured with the default ConfInterval of 300 seconds, or 5
minutes and a RestartLimit of 1. In this example, assume the Apache Web Server
process is started and remains online for two hours before failing. With the
RestartLimit set to 1, the ApacheAgent will restart the failing web server. If the
server fails again before the time set by ConfInterval, the ApacheAgent inform
HAD that the web server has failed and HAD will mark the resource as faulted
and begin a failover for the Service Group. If instead, the web server stays online
longer than the time specified by ConfInterval, the RestartLimit counter will be
cleared. In this way, the resource could fail again at a later time and be restarted.
The ConfInterval attribute gives the developer a method the discriminate between
a resource that occasionally fails and one that is essentially bouncing up and
down.

FaultOnMonitorTimeouts
When a monitor fails as many times as the value specified, the corresponding
resource is brought down by calling the clean entry point. The resource is then
marked FAULTED, or it is restarted, depending on the value set in the
RestartLimit attribute. When FaultOnMonitorTimeouts is set to 0, monitor
failures are not considered indicative of a resource fault. (This attribute is
available in versions of VCS above 1.2 only)

Default = 4

Using VERITAS Cluster Server 9/13/01
Page 61

MonitorInterval
Duration (in seconds) between two consecutive monitor calls for an ONLINE or
transitioning resource. The interval between monitor cycles directly affects the
amount of time it takes to detect a failed resource. Reducing MonitorInterval can
reduce time required for detection. At the same time, reducing this time also
increases system load due to increased monitoring and can also increase the
chance of false failure detection.

Default = 60 seconds

MonitorTimeout
Maximum time (in seconds) within which the monitor entry point must
complete or else be terminated. In VCS 1.3, a Monitor Timeout can be
configured as a resource failure. On VCS 1.1.2, this simply caused a warning
message in the VCS engine log.

Default = 60 seconds

OfflineMonitorInterval
Duration (in seconds) between two consecutive monitor calls for an OFFLINE

resource. If set to 0, OFFLINE resources are not monitored. Individual resources
are monitored on all systems in the SystemList of the service group the resource
belongs to, even when they are OFFLINE. This is done to detect Concurrency
Violations when a resource is started outside VCS control on another system. The
default OfflineMonitorInterval is set to 5 minutes to reduce system loading
imposed by monitoring offline service groups

Default = 300 seconds

OfflineTimeout
Maximum time (in seconds) within which the offline entry point must
complete or else be terminated. There are certain cases where the offline function
may take a long time to complete, such as shutting down an active Oracle
database. When writing custom agents, the developer must remember that is the
function of the monitor entry point to actually check that the offline is successful,
not the offline. In many cases, the offline timeout is due to attempting to wait for
offline and do some sort of testing in the offline script.

Default = 300 seconds

OnlineRetryLimit
Number of times to retry online, if the attempt to online a resource is
unsuccessful. This parameter is meaningful only if clean is implemented. This
attribute is different than RestartLimit in that it only applies during the initial
attempt to bring a resource online when the service group is brought online. The

Using VERITAS Cluster Server 9/13/01
Page 62

counter for this value is reset when the monitor process reports the resource has
been successfully brought online.

Default = 0

OnlineTimeout
Maximum time (in seconds) within which the online entry point must
complete or else be terminated. As with the offline timeout, the developer must
remember that the function of the online entry point is to start the resource, not
check if it is actually online. If extra time is needed to wait for the resource to
come online, this should be coded in the online exit code in number of seconds to
wait before monitoring.

Default = 300 seconds

RestartLimit
Affects how the agent responds to a resource fault. If set to a value greater than
zero, the agent will attempt to restart the resource when it faults. In order to utilize
RestartLimit, a clean function must be implemented. The act of restarting a
resource happens completely within the agent and is not reported to HAD. In this
manner, a resource will still show as online on the VCS GUI or output of
hastatus during this process. The resource will only be declared as offline if
the restart is unsuccessful.

Default = 0

ToleranceLimit
A non-zero ToleranceLimit allows the monitor entry point to return OFFLINE

several times before the resource is declared FAULTED. This is useful when a
resource may be heavily loaded and end-to-end monitoring is in effect. For
example, a web server under extreme load may not be able to respond to an in-
depth monitor probe that connects and expects an html response. Setting a
ToleranceLimit of greater than zero allows multiple monitor cycles to attempt the
check before declaring a failure.

Default = 0

Usage example
In the following example, a customer wishes to modify the way an Apache web
server is handled by the ApacheAgent. The customer does not want the web
server to be failed over unless it fails 4 times in a 10 minute period. Further, the
web server is expected to sometimes respond slowly, so the customer wishes to
retry a failed monitor at least once.

The following changes would be required in the ApacheTypes.cf file:

Using VERITAS Cluster Server 9/13/01
Page 63

 type Apache (
 int RestartLimit = 4
 int ConfInterval = 600
 int ToleranceLimit = 1
 str ServerRoot
 str PidFile
 str IPAddr
 int Port
 str TestFile
 static str ArgList[] = { ServerRoot, PidFile, IPAddr, Port,
TestFile }
)

Configuring different agent behavior for multiple resources
Setting attributes for resource types effects all resources of that type. In the above
example, changing RestartLimit changes the restart behavior for all Apache
resources. Modifications to agent behavior cannot be made at the individual
resource level. If different values are required for different resources, it is simple
to create a new resource type and agent.

For example, a customer wishes to monitor a group of web servers every 30
seconds for critical services and every 5 minutes for other web sites. The customer
would create a second Apache type by copying the entire
/opt/VRTSvcs/bin/Apache directory to something like
/opt/VRTSvcs/bin/Apache1. The ApacheAgent in the new directory is renamed
Apache1Agent. The user then copies the original ApacheTypes.cf entry to
Apache1Types.cf such as the following.

type Apache (
 int RestartLimit = 4
 int ConfInterval = 600
 int ToleranceLimit = 1
 int MonitorInterval = 30
 str ServerRoot
 str PidFile
 str IPAddr
 int Port
 str TestFile
 static str ArgList[] = { ServerRoot, PidFile, IPAddr,
Port, TestFile }
)
type Apache1 (
 int RestartLimit = 4
 int ConfInterval = 600
 int ToleranceLimit = 1
 int MonitorInterval = 300
 str ServerRoot
 str PidFile
 str IPAddr
 int Port
 str TestFile
 static str ArgList[] = { ServerRoot, PidFile, IPAddr,
Port, TestFile }
)

Using VERITAS Cluster Server 9/13/01
Page 64

Service Group Workload Management (SGWM)
As customers move into larger and larger servers, the need for “Server Consolidation”
becomes evident. A large number of applications are being deployed on a more limited
number of “Enterprise Class” servers. This is a perfect place for true N-to-N clustering.
N-to-N refers to multiple Service Groups running on multiple servers, with each Service
Group capable of being failed over to different servers in the cluster. For example,
imagine a 4-node cluster, with each node supporting 3 critical database instances. On
failure of any node, each of the three instances is started on a different node, ensuring on
node does not get overloaded. This is a logical evolution of N + 1, where there is not a
need for a “standby system” but rather “standby capacity” in the cluster. Cascading
failure is also possible in this configuration. This refers to the cluster being able to
tolerate multiple failures and best distribute Service Group load.

VCS 2.0 Service Group Workload Management (SGWM) is an advanced capability in
VCS to proactively determine the best possible system to host an application during
startup or following an application or server fault. SGWM provides necessary tools to
make intelligent decisions on startup or failover location based on system capacity and
finite resource availability.

SGWM Concepts
Service Group Load Management is enabled when AutoStartPolicy and/or
FailOverPolicy is set to “Load”
As described in the Service Group Operations chapter, VCS has three primary settings for
FailOverPolicy. These are Priority, RoundRobin and Load.

Priority is the most basic. The system with the lowest priority in a running state is
chosen. Priority is set implicitly via ordering in SystemList, such as SystemList
= {server1, server2} or by explicitly setting priority in the SystemList, such as
SystemList = {system1=0, system2=1}. This is ideal for a simple two-node
cluster, or a small cluster with a very small number of Service Groups. Priority is the
default behavior in VCS.

RoundRobin chooses the system running the least number of Service Groups as a
failover target. This is ideal for larger clusters running a large number of Service Groups
of essentially the same server load characteristics (for example similar databases or
applications).

Load is the most flexile and powerful policy. It provides the framework for true server
consolidation at the data center. Load policy is made of two components, System
Capacity and Service Group Load, and System Limits and Group
Prerequisites.

Using VERITAS Cluster Server 9/13/01
Page 65

System Capacity and Service Group Load
System Capacity sets a fixed load handling capacity to servers and a fixed demand
(Load) for service groups. For example, imagine a 4-node cluster consisting of two 16-
processor servers and two 8-processor servers. The administrator sets a Capacity on
the 16-CPU to 200 and the 8-CPU to 100. Each Service Group running on a system has a
predefined Load value. When a group comes online, its Load is subtracted from the
Capacity of the system. The cluster engine keeps track of the
AvailableCapacity of all systems in the cluster. AvailableCapacity is
determined by subtracting Load of all groups online (a group is considered online if
online or partially online) on a system from the system Capacity. When a failover
must occur, the cluster engine determines the system with the highest
AvailableCapacity and starts the group on that system. During a failover scenario
involving multiple groups, failover decisions are made serially to facilitate the proper
load based choice, however ServiceGroup online operations immediately follow in
parallel.
System Capacity is a soft restriction. This means that the value can go below zero.
During a cascading failure scenario, AvailableCapacity can be negative.

Static Load vs. Dynamic Load
Previous versions of VCS, prior to VCS 2.0, allowed the user to set the DynamicLoad
of a server with an outside monitoring program. The user can run any monitoring
package desired, and then feed estimated load to the VCS engine with the “hasys –
load command”. In previous versions, the system with the lowest value in the
DynamicLoad variable was chosen for a failover target if FailOverPolicy was set
to Load.
DynamicLoad is still available in VCS 2.0, but it now integrates with the SGWM
framework. Typically, the engine sets remaining capacity with the function
AvailableCapacity = Capacity – (Sum of Load of all online Service Groups)
If DynamicLoad is specified with the hasys –load command, this value overrides
calculated Load values. Using DynamicLoad, AvailableCapacity = Capacity
– DynamicLoad. This allows a user to more finely control system-loading values than
estimated Service Group loading. The downside is the user must setup and maintain a
load estimation package outside VCS. One caveat to note: DynamicLoad specified with
hasys –load would be subtracted from Capacity as an integer, and not a
percentage. For example, if a system has a Capacity of 200, and the outside package
determines the server is 80% loaded, the package should inform VCS that
DynamicLoad is 160 (rather than 80). This is done by first querying VCS for the value
of Capacity with the hasys –display command, then using this value to calculate
the actual load value to pass back in.
Future releases of VCS will allow specifying the DynamicLoad value as a percentage.

To clarify:

AvailableCapacity of a system = Capacity – Current System Load

Using VERITAS Cluster Server 9/13/01
Page 66

Current System Load = Dynamic system load if dynamic system load is
specified, (DynamicLoad > 0)
 OR

 Current System Load = Sum of Load of all groups online on that system

Limits and Prerequisites
System Limits and Service Group Prerequisites add additional capability to the load
policy. The user can set a list of finite resources available on a server (Limits), such as
shared memory segments, semaphores and others. Each Service group is then assigned a
set of Prerequisites. For example, a database may need 3 shared memory segments
and 10 semaphores. VCS load policy will first determine a subset of all systems that meet
these criteria and then choose the lowest loaded system from this set. In this way, an
unloaded system that does not meet all the Prerequisites of a group will not be
chosen. As soon as the decision is made to online a group on a particular system, the
Prerequisites of the group is subtracted from the Limits of the system.

When configuring Limits and Prerequisites, users should first define group
Prerequisites and then define corresponding Limits on each system. Each system
can have different limit. There is no limit on number of group prerequisites or system
limits. Also, they can appear in any order. Not all the groups have to define all
Prerequisites and not all systems have to define all Limits. If system does not
have defined limits for a given system resource, then default value of 0 is assumed.
Similarly, when group does not define Prerequisites for given system resource, a
default value of 0 is assumed.

All of the prerequisites specified in a group’s Prerequisites must be met. System Limits
and group Prerequisites can be used creatively in many ways. For example, if someone
wants only one group online on a system at a time, following configuration will work:

Prerequisites = { GroupWeight = 1 }
Limits = { GroupWeight = 1 }

Adding the above entries to the definition of each group and system will make sure that
each system can have only one group online at a time.

System Limits and Group Prerequisites work independently of FailOverPolicy.
Prerequisites are used to determine a sub set of eligible systems that a group can be
started on during failover or startup. Once a list of systems meeting proper Prerequisites
is created, the engine will then follow the configured FailOverPolicy.

Capacity and Limits Together
Capacity and limits combined make a very powerful tool for determining proper failover
node. The system with all proper prerequisites and with the highest available capacity is

Using VERITAS Cluster Server 9/13/01
Page 67

always chosen. If multiple systems meet the required Prerequisites, and have the
same AvailableCapacity, the system lexically first in the SystemList is chosen
System Limits are a hard value. This means a server will not be chosen if it does not
meet the Prerequisites of the group. This cannot be overridden. Capacity is a
soft limit. This means the system with the highest AvailableCapacity will be
chosen, even if this will result in a negative AvailableCapacity. Systems with an
AvailableCapacity of less than the percentage set by LoadWarningLevel, and
staying at that load for longer than LoadTimeThreshold seconds will invoke the
Overload trigger described below.

Overload Warning
Overload warning provides the notification piece of the load policy. When a server
sustains a pre-determined load level set by LoadWarningLevel (static or dynamically
determined) for a predetermined time, set by LoadTimeThreshold, the
loadwarning trigger is initiated. (See Triggers for a full description of Event
Management with Triggers). The loadwarning trigger is a user defined script or
application designed to carry out the proper actions. Sample scripts detail simple operator
warning on overload as well as a method to move or shutdown groups based on user
defined priority values. For example, if load on a server running a business critical
database reaches and stays above a user defined threshold, operators will be immediately
notified. The loadwarning trigger could then scan the system for any service groups with
a lower priority than the database (such as an internal HR app) and move the app to a
lesser-loaded system or even shut the app down. The key here is the framework is
completely flexible. The installer or user is free to implement any overload management
scheme desired.

SystemZones
SystemZones provide a sub set of systems to use in an initial failover decision. A
ServiceGroup will try to stay within its zone before choosing a host in another zone. For
example, imagine a typical 3-tier application infrastructure with web servers, application
servers and database servers. The application and database servers are configured in a
single cluster. Using SystemZones would require a ServiceGroup in the application
zone to try to fail to another application zone server if it is available. If not, it would then
fail to the database zone based on load and limits. In this configuration, excess capacity
and limits available on the database backend would essentially be kept in reserve for the
larger load of a database failover, while application servers would handle the load of any
groups in the application zone. During a cascading failure, excess capacity in the cluster
is still available to any ServiceGroup. The SystemZones feature allows fine tuning
application failover decisions, yet still retains the flexibility to fail anywhere in the cluster
if necessary.

Load Based AutoStart
VCS 2.0 provides a new method to determine where a group should come up when the
cluster initially starts. Administrators can set the AutoStartPolicy to Load and allow the

Using VERITAS Cluster Server 9/13/01
Page 68

VCS engine to determine the best system to start on out of a group of systems. Service
Groups are placed in an AutoStart queue for load-based startup as soon as the group
probes on all running systems. As with failover, a subset of systems is first created that
meet all Prerequisites, then of those systems, the system with the highest
AvailableCapacity is chosen.
Using AutoStartPolicy = Load and SystemZones together allows the
administrator to establish a list of preferred systems in a cluster to initially run a group.
As mentioned above, in a 3-tier architecture, the administrator would want application
groups to start first in the application zone and database groups to start in the database
zone.

Configuring SGWM

System attributes
Attribute Data Type Description

Capacity Int Integer value expressing total system
load capacity. This value is relative
to other systems in the cluster and
does not reflect any real value
associated with a particular system.

For example, the administrator may
assign a value of 200 to a 16-
processor machine and 100 to an 8-
processor machine.

Default = 1

LoadWarningLevel Int A value, expressed as a percentage of
total capacity where load has reached
a critical limit. For example, setting
LoadWarningLevel = 80 sets the
warning level to 80%.

Default = 80%

LoadTimeThreshold Int How long the system load must
remain at or above
LoadWarningLevel before the
Overload trigger is fired.

Default = 900 seconds.

LoadTimeCounter Int (system) System maintained internal counter
of how many seconds the system

Using VERITAS Cluster Server 9/13/01
Page 69

load has been above
LoadWarningLevel. Incremented
every 5 seconds by the internal VCS
GlobalCounter. This value will reset
to zero anytime system load drops
below the value in
LoadWarningLevel.

Limits Association An unordered set of name=value
pairs denoting specific resources
available on a system. The format for
Limits is as follows: Limits = {
Name=Value, Name2=Value2 }. For
example, to configure a system with
10 shared memory segments and 15
semaphores available, the proper
entry is:

Limits = { ShrMemSeg=10,
Semaphores=15 }

Note, the actual names used in
setting limits is arbitrary and is not
actually obtained from the system.
This allows the administrator to set
up virtually any value desired.

CurrentLimits Association
(system)

System maintained value of current
values of limits. CurrentLimits =
Limits – (additive value of all service
group Prerequisites). For example, if
ShrMemSeg=10, and one group is
online with a ShrMemSeg
Prerequisite of 5, CurrentLimits
would equal { ShrMemSeg=5 }

DynamicLoad Int (system) System maintained value of current
dynamic load. This value is set
external to VCS with the hasys –load
command.

AvailableCapacity Int (system) AvailableCapacity = Capacity –
Current System Load

Current System Load =
DynamicLoad if dynamic system
load is specified, i.e., dynamic

Using VERITAS Cluster Server 9/13/01
Page 70

system load > 0 OR Current System
Load = Sum of Load of all groups
online on that system

For the purpose of above calculation,
a group is considered online if it is
fully or partially online or starting or
stopping.

Service Group Attributes

Attribute Data Type Description

Load Int Integer value expressing total system
load this group will put on a system.

For example, the administrator may
assign a value of 100 to a large
production Oracle database and 15 to an
web server

Default = 0

Prerequisites Association An unordered set of name=value pairs
denoting specific resources required by
this service group. The format for
Prerequisites is as follows: Prerequisites
= { Name=Value, name2=value2 }. For
example, to configure a service group to
require 10 shared memory segments
and 15 semaphores be available before
it can start, the proper entry is:

Prerequisites = { ShrMemSeg=10,
Semaphores=15 }

Note, the actual names used in setting
Prerequisites are arbitrary and is not
actually obtained from the system. Use
care to ensure values listed in
Prerequisites matches the same value in
Limits.

AutoStartPolicy String Scalar Sets the method for choosing a system
to start a group when the cluster comes
up. This is only applicable if multiple

Using VERITAS Cluster Server 9/13/01
Page 71

systems are listed in AutoStartList.
Possible values are Order, Priority and
Load.

Order (default): Systems are chosen in
the order in which they are defined in
the AutoStartList attribute.

Load: Systems are chosen in the order
of their capacity, as designated in the
AvailableCapacity system attribute.
System with the highest capacity is
chosen first.

Priority: Systems are chosen in the
order of their priority in the SystemList
attribute. Systems with the lowest
priority are chosen first.

FailOverPolicy String Scalar Selects one of three possible failover
policies. Possible values are Priority,
RoundRobin and Load.

SystemZones Association
Indicates the virtual sub lists within the
SystemList attribute that grants priority
in failing over. Values are string/integer
pairs. The string key is the name of a
system in the SystemList attribute, and
the integer is the number of the zone.
Systems with the same zone number are
members of the same zone. If a service
group faults on one system in a zone, it
is granted priority to fail over to another
system within the same zone, despite
the policy granted by the
FailOverPolicy attribute

Main.cf Usage
The following main.cf example will detail the use of various SGWM attributes in a
system definition and a service group definition.

include “types.cf”
cluster SGWM-demo (

)

Using VERITAS Cluster Server 9/13/01
Page 72

system LargeSvr1 (
 Capacity = 200
 Limits = { ShrMemSeg=20, Semaphores=10, Processors=12}
 LoadWarningLevel = 90
 LoadTimeThreshold = 600
)

group G1 (
 SystemList = { LgSvr1, LgSvr2, MedSvr1, MedSvr2 }
 SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=10, Semaphores=5, Processors=6
}
)

SGWM Examples

Simple 4-node limits only example

The following example details a simple use of Limits and Prerequisites to
control the total number of Service Groups that may run on any one node. The cluster
consists of 4 similar servers. There are 5 service groups, which are roughly equal in
overall processing power requirement and amount of load they put on a system. All
servers can host 2 such groups. Note that this does not use group Load and system
Capacity. Also, the groups use default AutoStartPolicy and FailOverPolicy.

Main.cf sample

system Svr1 (
Limits = {GroupWeight = 2}

)

system Svr2 (

Limits = {GroupWeight = 2}
)

system Svr3 (

Limits = {GroupWeight = 2}
)

system Svr4 (

Limits = {GroupWeight = 2}
)

group G1 (

SystemList = { Svr1, Svr2, Svr3, Srv4}
AutoStartList = { Svr1, Svr2 }
Prerequisites = { GroupWeight = 1}

Using VERITAS Cluster Server 9/13/01
Page 73

)

group G2 (

SystemList = { Svr1, Svr2, Svr3, Svr4}
AutoStartList = { Svr2, Svr3 }
Prerequisites = { GroupWeight = 1 }

)

group G3 (

SystemList = { Svr1, Svr2, Svr3, Svr4}
AutoStartList = {Svr3, Svr4 }
Prerequisites = { GroupWeight = 1 }

)

group G4 (

SystemList = { Svr1, Svr2, Svr3, Svr4}
AutoStartList = { Svr4, Svr1 }
Prerequisites = { GroupWeight = 1 }

)

group G5 (

SystemList = { Svr1, Svr2, Svr3, Svr4}
AutoStartList = { Svr2, Svr3 }
Prerequisites = { GroupWeight = 1 }

)

AutoStart Operation

This example uses the default AutoStartPolicy = Priority. Groups will be brought online
on the first system available in the AutoStartList. In this way, G1 will start on Svr1, G2
on Svr2, and so on. G5 will start on Svr2.

Normal Operation

The final cluster configuration (assuming all nodes running) will look like the following

Svr1
CurrentLimits = {GroupWeight=1}

 (Group G1)
Svr2

CurrentLimits = {GroupWeight=1}
 (Groups G2 and G5)
Svr3

CurrentLimits = {GroupWeight=1}
 (Group G3)
Svr4

CurrentLimits = {GroupWeight=1}
 (Group G4)

Failure Scenario

In the first failure scenario, assume Svr2 fails. With groups G2 and G5 configured with
an identical SystemList, both groups are capable of running on any system. The engine
will serialize the choice of failover nodes for the two groups. G2, being canonically first,

Using VERITAS Cluster Server 9/13/01
Page 74

will choose Svr1, the lowest priority in the SystemList. This will exhaust the Limits for
Svr1. G5 will then choose the next running system in the order of the SystemList7. This
means G5 will go online on Svr3. Following the first failure, the cluster now looks like
the following:

Svr1
 CurrentLimits = {GroupWeight=0 }
 (Groups G1 and G2)
Svr3

CurrentLimits = {GroupWeight=0}
 (Groups G3 and G5)
Svr4
 CurrentLimits = {GroupWeight=1}
 (Group G4)

Cascading Failures

Assuming Svr2 was not immediately repaired, the cluster can tolerate the failure of an
individual Service Group on Svr1 or Svr3, but no further node failures.

Simple 4-node load based example
The following sample cluster will show the use of simple load based startup and failover.
SystemZones, Limits and Prerequisites will not be used.
The cluster consists of four identical systems, each with the same capacity. Eight service
groups, G1-G8, with various loads run in the cluster.
Main.cf sample

include “types.cf”
cluster SGWM-demo

system Svr1 (
 Capacity = 100
)

system Svr2 (
 Capacity = 100
)

system Svr3 (
 Capacity = 100
)

system Svr4 (
 Capacity = 100
)

group G1 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }

Using VERITAS Cluster Server 9/13/01
Page 75

 FailOverPolicy = Load
 Load = 20
)

group G2 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 40
)

group G3 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 30
)

group G4 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 10
)

group G5 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 50
)

group G6 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 30
)

group G7 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }
 FailOverPolicy = Load

 Load = 20
)

group G8 (
 SystemList = { Svr1, Svr2, Svr4, Svr4 }
 AutoStartPolicy = Load
 AutoStartList = { Svr1, Svr2, Svr3, Svr4 }

Using VERITAS Cluster Server 9/13/01
Page 76

 FailOverPolicy = Load
 Load = 40
)

AutoStart Operation

As mentioned in the AutoStart description, groups will be placed in a queue as soon as
they are fully probed on all systems. For the purposes of this example, we will assume the
groups probe in the same order they are described, G1 through G8.

G1 will choose the system with the highest AvailableCapacity. Since all are equal, Svr1
will be chosen since it is canonically first. G2-G4 will follow on Svr2 through Svr4. At
this time, with the first 4 group startup decisions made, the cluster looks as follows:

Svr1
 AvailableCapacity=80

Svr2
 AvailableCapacity=60

Svr3
 AvailableCapacity=70

Svr4
 AvailableCapacity=90

As the next groups come online, G5 will start on Svr4, as it has the highest
AvailableCapacity. G6 will then start on Svr1, with 80 remaining. G7 will then online on
Svr3, with AvailableCapacity=70. G8 will online on Svr2, with AvailableCapacity=60.

Normal Operation

The final cluster configuration (assuming the original queue of G1-G8) will look like the
following

Svr1
 AvailableCapacity=50
 (Groups G1 and G6)
Svr2
 AvailableCapacity=20
 (Groups G2 and G8)
Svr3
 AvailableCapacity=50
 (Groups G3 and G7)
Svr4
 AvailableCapacity=40
 (Groups G4 and G5)

In this configuration, Svr2 will fire the Overload trigger after the default 900 seconds
since it is as default LoadWarningLevel of 80%.

Using VERITAS Cluster Server 9/13/01
Page 77

Failure Scenario

In the first failure scenario, assume Svr4 fails. This will immediately queue G4 and G5
for failure decision. G4 will choose Svr1, as it and Svr3 have AvailableCapacity=50 and
Svr1 is canonically first. G5 will go online on Svr3. Once again, remember that failure
decisions are made serially, not actual online and offline operations. The serializing of
the failover choice allows complete load based control, and adds less than one second to
total failover time.

Following the first failure, the cluster now looks like the following:

Svr1
 AvailableCapacity=40
 (Groups G1, G6 and G4)
Svr2
 AvailableCapacity=20
 (Groups G2 and G8)
Svr3
 AvailableCapacity=0
 (Groups G3, G7 and G5)

In this configuration, Svr3 will now fire the loadwarning trigger to notify administrators
that the server is overloaded. The operator could switch G7 to Svr1 to balance loading
across G1 and G3. As soon as Svr4 is repaired, it will rejoin the cluster with an
AvailableCapacity=100. Any further failover would be sent to Svr4.

Cascading Failures

Assuming Svr4 was not immediately repaired, further failures would be possible. For this
example, assume Svr3 now fails. G3 will immediately choose Svr1, G5 will choose Svr2,
and finally G7 will choose Svr1. This will result in the following:

Svr1
 AvailableCapacity= -10
 (Groups G1, G6, G4, G3 and G7)
Svr2
 AvailableCapacity= -30
 (Groups G2 and G8 and G5)

In this example, we can see how Capacity is a soft limit, and can go below zero.

Complex 4-node example
The following example will detail the use of various SGWM attributes 4-node cluster
using multiple system capacities and various limits. The cluster consists of 2 large
Enterprise servers (LgSvr1 and LgSvr2) and two Medium servers (MedSvr1 and
MedSvr2). There are also 4 Service Groups, G1 through G4, with various loads and

Using VERITAS Cluster Server 9/13/01
Page 78

prerequisites. G1 and G2 are database applications, with specific shared memory and
semaphore requirements, G3 and G4 are middle tier applications with no specific
memory or semaphores requirements, and simply add load to a given system.
Main.cf sample

include “types.cf”
cluster SGWM-demo (

)

system LgSvr1 (
 Capacity = 200
 Limits = { ShrMemSeg=20, Semaphores=10, Processors=12}
 LoadWarningLevel = 90
 LoadTimeThreshold = 600
)

system LgSvr2 (
 Capacity = 200
 Limits = { ShrMemSeg=20, Semaphores=10, Processors=12 }
 LoadWarningLevel=70
 LoadTimeThreshold=300
)

system MedSvr1 (
 Capacity = 100
 Limits = { ShrMemSeg=10, Semaphores=5, Processors=6}
)

system MedSvr2 (
 Capacity = 100
 Limits = { ShrMemSeg=10, Semaphores=5, Processors=6 }
)

group G1 (
 SystemList = { LgSvr1, LgSvr2, MedSvr1, MedSvr2 }
 SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
 AutoStartPolicy = Load
 AutoStartList = { LgSvr1, LgSvr2 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=10, Semaphores=5, Processors=6
}
)

group G2 (
 SystemList = { LgSvr1, LgSvr2, MedSvr1, MedSvr2 }
 SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
 AutoStartPolicy = Load
 AutoStartList = { LgSvr1, LgSvr2 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=10, Semaphores=5, Processors=6
}

Using VERITAS Cluster Server 9/13/01
Page 79

)

 group G3 (

 SystemList = { LgSvr1, LgSvr2, MedSvr1, MedSvr2 }
 SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2 }
 FailOverPolicy = Load
 Load = 30
)

group G4 (
 SystemList = { LgSvr1, LgSvr2, MedSvr1, MedSvr2 }
 SystemZones = { LgSvr1=0, LgSvr2=0, MedSvr1=1, MedSvr2=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2 }
 FailOverPolicy = Load
 Load = 20
)

AutoStart Operation

Using the main.cf example above, it can be seen that the following is the likely outcome
of the AutoStart operation
G1 – LgSvr1
G2 – LgSvr2
G3 – MedSvr1
G4 – MedSvr2

All groups will begin a probe sequence when the cluster starts. Groups G1 and G2 have
an AutoStartList of LgSvr1 and LgSvr2. When these groups probe, the will be queued to
go online on one of these servers, based on highest AvailableCapacity. Assuming G1
probes first, it will choose LgSvr1 because LgSvr1 and LgSvr2 both have an initial
AvailableCapacity of 200, and LgSvr1 is lexically first.
The same sequence will occur with G3 and G4 determining which server to chose
between MedSvr1 and MedSvr2.

Normal Operation

Assuming the running configuration described, the following can be determined:

LgSvr1
 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=6, Processors=6 }
LgSvr2

Using VERITAS Cluster Server 9/13/01
Page 80

 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=5, Processors=6}

MedSvr1
 AvailableCapacity=70
 CurrentLimits = { ShrMemSeg=10, Semaphores=5, Processors=6 }
MedSvr2
 AvailableCapacity=80
 CurrentLimits = { ShrMemSeg=10, Semaphores=5, Processors=6}

Failure Scenario

For the first failure example, assume system LgSvr2 fails. The cluster engine will first
scan all available systems in G2’s SystemList, with the same SystemZones
grouping as the server it was running on. It will then create a subset of systems meeting
the group’s Prerequisites. In this case, LgSvr1 meets all necessary Limits. G2
will be brought online on LgSvr1. This will result in the following configuration:

LgSvr1
 AvailableCapacity=0
 CurrentLimits = { ShrMemSeg=0, Semaphores=0, Processors=0 }
MedSvr1
 AvailableCapacity=70
 CurrentLimits = { ShrMemSeg=10, Semaphores=5, Processors=6 }
MedSvr2
 AvailableCapacity=80
 CurrentLimits = { ShrMemSeg=10, Semaphores=5, Processors=6}

After 10 minutes, (LoadTimeThreshold = 600) the loadwarning trigger on LgSvr1
will fire, as LoadWarningLevel is exceeding 90%.

Cascading Failure Scenario

In this scenario, a further failure of any system can be tolerated, as each system has
remaining Limits sufficient to accommodate the group running on the peer.

If a failure were to occur with either MedSvr1 or MedSvr2, the opposite MedSvr would
be chosen, as groups running there have MedSvr1 and MedSvr2 in their SystemZones. .

If a failure instead occurred with LgSvr1, running two groups (with LgSvr2 still offline),
the failover of the two groups will be serialized for the decision process. In this case, no
systems exist in the database zone. The first group canonically, G1, will chose MedSvr2,
as it meets all Limits and has the highest AvailableCapacity. Group G2 will
automatically choose MedSvr1, as it would be the only remaining system that meets
necessary Limits.

Using VERITAS Cluster Server 9/13/01
Page 81

Server Consolidation Example
The following example will detail a complex 8-node cluster running multiple applications
and several large databases. The database servers are all large enterprise systems,
LgSvr1, LgSvr2 and LgSvr3. The middle tier servers running multiple applications are
MedSvr1, MedSvr2, MedSvr3, MedSvr4 and MedSvr5.

Main.cf sample

include “types.cf”
cluster SGWM-demo (

)

system LgSvr1 (
 Capacity = 200
 Limits = { ShrMemSeg=15, Semaphores=30, Processors=18}
 LoadWarningLevel = 80
 LoadTimeThreshold = 900
)

system LgSvr2 (
 Capacity = 200
 Limits = { ShrMemSeg=15, Semaphores=30, Processors=18 }
 LoadWarningLevel=80
 LoadTimeThreshold=900
)

system LgSvr3 (
 Capacity = 200
 Limits = { ShrMemSeg=15, Semaphores=30, Processors=18 }
 LoadWarningLevel=80
 LoadTimeThreshold=900
)

system MedSvr1 (
 Capacity = 100
 Limits = { ShrMemSeg=5, Semaphores=10, Processors=6}
)

system MedSvr2 (
 Capacity = 100
 Limits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
)

system MedSvr3 (
 Capacity = 100
 Limits = { ShrMemSeg=5, Semaphores=10, Processors=6}
)

system MedSvr4 (
 Capacity = 100
 Limits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
)

system MedSvr5 (

Using VERITAS Cluster Server 9/13/01
Page 82

 Capacity = 100
 Limits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
)

group Database1 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { LgSvr1, LgSvr2, LgSvr3 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=5, Semaphores=10, Processors=6
}
)

group Database2 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { LgSvr1, LgSvr2, LgSvr3 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=5, Semaphores=10, Processors=6
}
)

group Database3 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { LgSvr1, LgSvr2, LgSvr3 }
 FailOverPolicy = Load
 Load = 100

Prerequisites = { ShrMemSeg=5, Semaphores=10, Processors=6
}
)

group Application1 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4,
MedSvr5 }
 FailOverPolicy = Load

Using VERITAS Cluster Server 9/13/01
Page 83

 Load = 50
)

group Application2 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4,
MedSvr5 }
 FailOverPolicy = Load
 Load = 50
)

group Application3 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4,
MedSvr5 }
 FailOverPolicy = Load
 Load = 50
)

group Application4 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4,
MedSvr5 }
 FailOverPolicy = Load
 Load = 50
)

group Application5 (
 SystemList = { LgSvr1, LgSvr2, LgSvr3, MedSvr1, MedSvr2,
MedSvr3, MedSvr4, MedSvr5 }
 SystemZones = { LgSvr1=0, LgSvr2=0, LgSvr3=0, MedSvr1=1,
MedSvr2=1, MedSvr3=1, MedSvr4=1, MedSvr5=1 }
 AutoStartPolicy = Load
 AutoStartList = { MedSvr1, MedSvr2, MedSvr3, MedSvr4,
MedSvr5 }
 FailOverPolicy = Load
 Load = 50
)

AutoStart Operation

Using VERITAS Cluster Server 9/13/01
Page 84

Using the main.cf example above, we can assume the following AutoStart Sequence:

Database1 – LgSvr1
Database2 – LgSvr2
Database3 – LgSvr3
Application1 – MedSvr1
Application2 – MedSvr2
Application3 – MedSvr3
Application4 – MedSvr4
Application5 – MedSvr5

Normal Operation

Assuming the running configuration described, the following can be determined:

LgSvr1
 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=20, Processors=12 }

LgSvr2
 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=20, Processors=12 }

LgSvr3
 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=20, Processors=12 }

MedSvr1
 AvailableCapacity=50
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

MedSvr2
 AvailableCapacity=50
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

MedSvr3
 AvailableCapacity=50
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

MedSvr4
 AvailableCapacity=50
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

MedSvr5
 AvailableCapacity=50
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }

Using VERITAS Cluster Server 9/13/01
Page 85

Failure Scenario

The configuration above is an ideal example of FailOverPolicy=Load and SystemZones.
The database zone (System Zone 0) is capable of handling up to two failures. Each server
has adequate Limits to support up to three Database Service groups (with an expected
performance drop with all groups running on one server). Similarly, the Application zone
has excess capacity built into each machine.
One other fact to note: The Application group machines all specify Limits to support one
database, even though the Application groups do not run any Prerequisites. This will
allow a database to fail across SystemZones if absolutely necessary and run on the least
loaded application zone machine.

For the first failure example, assume system LgSvr3 fails. The cluster engine will first
scan all available systems in Database2’s SystemList, with the same SystemZones
grouping as the server it was running on. It will then create a subset of systems meeting
the group’s Prerequisites. In this case, LgSvr1 and LgSvr2 meet all necessary
Limits. Database1 will be brought online on LgSvr1. This will result in the following
configuration:

LgSvr1
 AvailableCapacity=0
 CurrentLimits = { ShrMemSeg=5, Semaphores=10, Processors=6 }
LgSvr2
 AvailableCapacity=100
 CurrentLimits = { ShrMemSeg=10, Semaphores=15, Processors=12 }

In this scenario, a further failure of any system can be tolerated, as each system has
remaining Limits sufficient to accommodate the group running on the peer.

Cascading Failure Scenario

If the performance of a specific database is unacceptable with two database groups
running on one server (or three following a second failure), the SystemZones policy has
another helpful effect. Failing a database group into the Application zone has the effect of
resetting its preferred zone. For example, in the above scenario, Database1 has been
moved to LgSvr1. The administrator could reconfigure the application zone to move two
application groups to one system. Then the database application can be switched to the
empty application server (MedSvr1-MedSvr5). This will place Database1 in Zone1
(Application zone). If a failure occurs in Database1, it will pick the least loaded server in
the Application zone meeting its Prerequisites.

Using VERITAS Cluster Server 9/13/01
Page 86

Common Problems

AutoDisabled Service groups
A Service Group is AutoDisabled by VCS whenever there is any chance the group
may be online elsewhere and VCS would be unable to detect this case. Service
Groups online are not affected by this state, but they are prevented from staring
anywhere else. Service groups are autodisabled in the following circumstances

• A system running a group faults while it was in Jeopardy. In this case, we
realize the group was online on this system and se do not know if the
system is really dead or suffered a network fault.

• HAD is halted on a system, but LLT and GAB remain running. This can
be cause by killing HAD and HASHADOW simultaneously, or using
hastop or hastop –force.

• LLT has lost connection to a system, but disk heartbeat is still present. In
this case, we know the node is alive, but have no visibility to resource
status.

• All resources are not probed on all running systems. This can occur during
cluster startup or node addition. Resources not probing can be caused by a
number of factors, including resource misconfiguration in main.cf or
proper agents not installed on all systems.

Clearing an AutoDisabled flag can be done from the GUI or the command line
with the hagrp –autoenable groupname command. This command
should not be run until the administrator determines the cause of the
AutoDisabled condition! The system has entered this state to prevent possible data
corruption. The administrator MUST verify no resource from the affected group is
online on any system in the cluster before clearing the flag.

Resources Not Probed
Resources in a VCS cluster are monitored to determine if they are offline or
online at regular intervals. Before a Service Group can be brought online (failover
groups) HAD must determine that all resources in the group are offline on all
systems configured to run the group. It does this by running a monitor cycle on all
resources in question. Common problems preventing resource probing include:

• Agent required to monitor a resource is not installed. This most often
happens when adding Enterprise or Custom Agents.

• Resource not configured correctly. Placing incorrect resource definitions
in the main.cf file can make it impossible to test if the resource is offline

• Agents not running on a system. This is often seen if the system runs out
of virtual memory or allowable number of processes

Using VERITAS Cluster Server 9/13/01
Page 87

Stale/Invalid Configuration
Stale configuration at startup is probably the most common VCS issue. This can
only be caused by an invalid configuration or a .stale file. See the Configuration
File replication section for more information.

Application/Resources not starting
Applications or resources not starting in VCS can be frustrating to troubleshoot.
As soon as the application fails, VCS wants to failover all resources to another
system. The first piece of problem resolution is to determine when the error
occurred. If this is a brand new install and the app has not yet run under VCS
control, has it been tested outside VCS control? It is recommended applications
always be tested outside VCS prior to bringing under cluster control. This is key
for complex applications like Oracle. Most problems are system and application
setup related and not VCS.

Once you have hand tested the application, verify the resource is properly
configured in the main.cf file. Then attempt to bring online under VCS control.
Monitor the engine.log_A via tail, or with the log monitor on the GUI. This will
provide the first warning of anything wrong.

Another technique that may help is to use the GUI or command line to start all
resources the app depends on, and then freeze the service group. This will prevent
VCS from taking action if the application faults. You may then hand start the
application and see if the problem exists with the application, or perhaps with the
resource configuration below the application in the Service Group.

Failover Times and Other Performance Issues
A very common question posed by prospective clustering customers is “How long
does it take to fail over my application, such as Oracle?” This is a difficult
question, as the answer is invariably “It depends”. Failover time for an application
is almost entirely dependant on the application and not VCS. The second common
question is “What is the performance impact of VCS on my server?”

The following section is taken almost directly from the VCS Users Guide, titled
VCS Performance Considerations (Thank you to Darshan Joshi.) It will cover
times required to fail over and switch over Service Groups and overall impact on a
server by VCS.

VCS Failure Detection/Failover Performance
This section describes factors that affect VCS operations, such as bringing a
resource or service group online, taking them offline, and failing over service
groups over to a different system.

Using VERITAS Cluster Server 9/13/01
Page 88

Bringing a Service Group Online
The time it takes to bring a service group online depends on the number of
resources in the service group, the service group topology, and the time to online
the group’s resources. For example, if a service group G1 has three resources, R1,
R2, and R3 (where R1 depends on R2 and R2 depends on R3), VCS first onlines
R3. When R3 is online, VCS onlines R2. When R2 is online, VCS onlines R1.
The time it takes to online G1 equals the time it takes to bring all resources online.
However, if R1 depends on both R2 and R3, but there was no dependency
between them, the online operation of R2 and R3 is started in parallel. When both
are online, R1 is brought online. The time it takes to online the group is Max (the
time to online R2 and R3), plus the time to online R1. Typically, broader service
group trees allow more parallel operations and can be brought online faster.
Deeper service group trees do not allow much parallelism and serializes the group
online operation.

Taking a Service Group Offline
The time it takes to offline a service group depends on the number of resources in
the service group, the service group topology, and the time to offline the group’s
resources. Service group offlining works from the top down, as opposed to
onlining, which works from the bottom up.

Bringing a Resource Online
The online entry point of an agent attempts to bring the resource online. This
entry point may return before the resource is fully online. The subsequent monitor
determines if the resource is online, then reports that information to VCS. The
time it takes to bring a resource online equals the time for the resource to go
online, plus the time for the subsequent monitor to execute and report to VCS.
Most resources are online when the online entry point finishes. The agent
schedules the monitor immediately after the entry point finishes, so the first
monitor detects the resource as online.

For some resources, such as a database server, recovery can take longer, so the
time it takes to bring a resource online depends on the amount of data to recover.
Large applications typically take the majority of time in a Service Group startup.
A database could take minutes or even hours to recover after a fault. The second
largest time use is storage configuration.

Taking a Resource Offline
Similar to the online entry point, the offline entry point attempts to offline the
resource, and may return before resource is actually offline. Subsequent
monitoring determines whether the resource is offline or not. The time it takes to
offline a resource equals the duration of the subsequent monitor executions plus
its reporting to VCS that the resource is offline. Most resources are typically
offline when the offline entry point finishes. The agent schedules the monitor

Using VERITAS Cluster Server 9/13/01
Page 89

immediately after the offline entry point finishes, so the first monitor detects the
resource as offline.

Service Group Switch
The time it takes to switch a service group equals the time to offline a service
group on the source system, plus the time to bring the service group online on the
target system.

Service Group Failover
The time it takes to failover a service group when a resource faults equals the time
to detect the resource fault, plus the time to offline the service group on source
system, plus the time for the VCS policy module to select target system, plus the
time to bring the service group online on target system.

The time it takes to failover a service group when a system faults equals the time
to detect system fault, plus the time to offline the service group on source system,
plus the time for the VCS policy module to select target system, plus the time to
bring the service group online on target system. The time it takes the VCS policy
module to detect the target system is negligible in comparison to the other factors.

In both cases, application recovery on a failover may be significantly longer than
on a switchover.

Detecting Resource Failure
The time it takes to detect a resource fault or failure depends on the
MonitorInterval attribute for the resource type. When a resource faults, the next
monitor detects it. The agent may not declare the resource as faulted if the
ToleranceLimit attribute is set to non-zero. If the monitor entry point reports
offline more often than the number set in ToleranceLimit, the resource is declared
faulted. (If the resource has remained online for the interval designated in
ConfInterval, any earlier reports of offline are not counted against
ToleranceLimit.)

When the agent determines that the resource is faulted, it calls the clean entry
point, if implemented. This is done to verify that the resource is completely
offline. The next monitor after clean confirms the offline. The agent then tries to
online the resource again if RestartLimit is non-zero. The agent attempts to restart
the resource according to the number set in RestartLimit before it gives up and
informs the VCS engine that the resource is faulted. (If the resource has remained
online for the interval designated in ConfInterval, earlier attempts to restart are
not counted against RestartLimit.) In most cases, ToleranceLimit is 0.

The time it takes to detect a resource failure is the time it takes the agent monitor
to detect failure, plus the time to clean up the resource if the clean entry point is
implemented. Therefore, the time it takes to detect failure depends on the

Using VERITAS Cluster Server 9/13/01
Page 90

MonitorInterval, the efficiency of the monitor and clean (if implemented) entry
points, and the ToleranceLimit (if set).

In some cases, the failed resource may hang and may also cause the monitor to
hang. For example, if the database server is hung and the monitor tries to query,
the monitor will also hang. If the monitor entry point is hung, the agent eventually
times it out. By default, the agent timeouts the monitor entry point after 60
seconds. This can be adjusted by changing the MonitorTimeout attribute. The
agent retries monitor after the MonitorInterval. If the monitor entry point times
out consecutively for the number of times designated in the attribute
FaultOnMonitorTimeouts, the agent treats the resource as faulted. The agent calls
clean, if implemented. The default value of FaultOnMonitorTimeouts is 4, and
can be changed according to the type. A high value of this parameter delays
detection of a fault if the resource is hung. If the resource is hung and causes the
monitor entry point to hang, the time to detect it depends on MonitorTimeout,
FaultOnMonitorTimeouts, monitor and clean (if implemented) efficiency.

As with many other concepts, detecting resource failure involves a compromise.
Adding capability for the monitor to tolerate a resource not responding via
ToleranceLimit increases time to detect a real failure. Adding local restart via
RestartLimit also causes longer failure detection on real failure. The shortest
resource failure detection time (and the least flexible) has RestartLimit = 0 and
ToleranceLimit = 0. This will also cause a group failover immediately on
detection of any resource problem rather than trying to restart/repair.

Detecting System Failure
When a system crashes or is powered off, it stops sending heartbeats to other
systems in the cluster. By default, other systems in the cluster wait 21 seconds
before declaring it dead. The time of 21 seconds derives from 16 seconds default
timeout value for LLT peer inactive timeout, plus 5 seconds default value for
GAB stable timeout. See the VCS Users Guide for instructions and warnings on
modifying these values.

Detecting Network Link Failure
If a system loses a network link to the cluster, other systems stop receiving
heartbeats over the links from that system. As mentioned above, LLT detects this,
and waits for 16 seconds before declaring that the system lost a link.

 Cluster Boot Time
When a cluster system boots, the kernel drivers and VCS process are started in a
particular order. If it is the first system in the cluster, VCS reads the cluster
configuration file main.cf and builds an “in-memory” configuration database. This
is the LOCAL_BUILD state. When the system finishes building the configuration
database, it transitions into the RUNNING mode. If another system joins the
cluster while the first system is in the LOCAL_BUILD state, it must wait until the
first system transitions into RUNNING mode. The time it takes to build the

Using VERITAS Cluster Server 9/13/01
Page 91

configuration depends on the size of the configuration and the dependencies. VCS
creates an object for each system, service group, type, and resource. Typically, the
number of systems, service groups and types are few, so the number of resources
and resource dependencies determine how long it takes to build the configuration
database and to get VCS into RUNNING mode. If a system joins a cluster in
which at least one system is in RUNNING mode, it builds the configuration from
the lowest system in that mode.

Impact of VCS on Overall System Performance
VCS and its agents run on the same systems as the applications. Therefore, VCS
attempts to minimize its impact on overall system performance. The impact of
VCS applies to three main components of clustering: the kernel; specifically,
GAB and LLT, the VCS engine, and the VCS agents. Each is described below.
(For details on attributes or commands mentioned in the following sections, see
the chapter on administering VCS from the command line and the chapter on VCS
attributes.)

Kernel Components (GAB and LLT)
Typically, overhead of VCS kernel components is minimal. Kernel components
primarily provide heartbeat and atomic information exchange among cluster
systems. By default, each system in the cluster sends two small heartbeat packets
every second to the other systems in the cluster. Heartbeat packets are sent over
all network links configured in the llthosts configuration file. Intersystem
communication also takes place over one of the network links. VCS uses only one
network link at at time for intersystem communication, and switches to a different
link if the link fails. Typically, these are private network links and do not increase
traffic on your public network or LAN. You can configure a public network
(LAN) link as low-priority, used only as a heartbeat link, which by default
generates one small (approximately 64-byte) broadcast packet per second from
each system.

VCS Engine
The VCS engine process, HAD, runs as a daemon process. By default it runs as a
real-time, high-priority process, which ensures that it sends heartbeats to kernel
components and responds quickly to any failures. You can adjust the value of
VCS engine scheduling class and priority by setting EngineClass and
EnginePriority attributes; however, for optimum performance, we strongly
recommend using the default values. VCS also provides a way to control
scheduling class and priority for processes invoked by VCS. These can be
adjusted by setting ProcessClass and ProcessPriority attributes. See the chapter on
advanced topics for more information on setting these attributes. VCS “sits” in a
loop waiting for messages from agents, ha commands, GUI and other systems.
Under normal conditions, the number of messages processed by VCS engine is
few. They mainly include heartbeat messages from agents and update messages

Using VERITAS Cluster Server 9/13/01
Page 92

from the global counter. VCS may exchange additional messages when an event
occurs, but typically overhead is nominal even during events. (Note that this
depends on the type of event; for example, a resource fault may invoke offlining a
group on one system and onlining on another system.)

To continuously monitor VCS status, use the VCS GUI, “Cluster Manager,” or
the command hastatus. Both methods maintain connection to VCS and register for
events, and are more efficient compared to running commands like hastatus -
summary or hasys in a loop.

The number of clients connected to VCS can affect performance if several events
occur. For example, if five GUI processes are connected to VCS, VCS sends state
updates to all five. Maintaining fewer client connections to VCS reduces this
overhead.

Reducing Failover Time
As detailed above, a large number of factors govern failover time. Of all factors
however, application startup time is usually the longest. In a normal
configuration, most failures are detected within one minute. So reducing monitor
interval or anything else can really only save seconds. It is far better to focus
effort on application recovery or startup. This is especially critical in database
environments.

Reducing Database Recovery Time
Reducing database recovery time usually involves shortening interval between
database checkpoints, or the time when a database synchronizes it’s in memory
copy with the on disk copy. The longer the checkpoint interval, the more redo log
entries that must be replayed on recovery. Other variables such as the Oracle
FAST_START_IO_TARGET time affect the amount of data that must be
reloaded on recovery. Many values that directly reduce recovery time will
inversely affect performance. This fact may require a business to balance its
performance needs versus recovery time profile. Or it may require adding
additional processor power to offset the additional penalty of recovery time
reduction.

Reducing Storage Import Time
Large storage configurations take time for disk group deport and import cycles. A
new technology from VERITAS to alleviate this problem is the SANPoint
Foundation Suite/HA. This solution bundle includes VCS and cluster version of
the VERITAS Volume Manager (CVM) and VERITAS File System (CFS). CVM
and CFS allow multiple hosts to read-write mount file systems over a SAN
connection. With the storage already imported and file systems mounted, the
storage portion of a failover is completely eliminated. SANPoint Foundation
Suite/HA is currently shipping on Solaris and soon to release on HP.

Using VERITAS Cluster Server 9/13/01
Page 93

Recommended Configurations
The following section will list general guidelines on a number of areas
surrounding VCS. These recommendations are just that, recommendations. They
are compiled from several thousand successful deployments by VERITAS
Enterprise Consulting Services personnel and represent the best way to ensure the
highest application availability. Failure to follow these recommendations will not
result in refusal of support from VERITAS Software or an immediate failure in
your cluster. It will however, based on real world experience, reduce the
availability potential of your cluster.

Eliminate Single Points of Failure
The entire concept behind High Availability clustering is to provide redundant
components to remove Single Point of Failure (SPOF). This section will discuss
common areas to examine for SPOF.

Heartbeat Network
VCS requires heartbeat to function properly. The VCS Installation Guide specifies
a minimum of one network and one disk heartbeat. The recommended
configuration is a minimum of two private LLT network heartbeats. These
heartbeats must not share any infrastructure component, such as hub, switch, inner
switch link, hub/switch power source, etc. Ensure network cables are run in
completely separate wire runs or paths. In situations where servers are in separate
buildings, ensure complete independent paths are used between buildings. When
actually configuring the network ports on each system, ensure the heartbeats use
different NICs and even different I/O boards. These private network interfaces are
reserved for VCS use only and should not be shared with any other network
duties, such as a data center backup network.

Addition of a low priority heartbeat on the public network, in addition to two
private networks is strongly recommended. This low priority network can alseo be
placed on a data center backup network.

Another possible configuration would be a single high priority dedicated heartbeat
network, and two low priority heartbeats on completely separate public networks.
For example a data center backup network and a customer public network. This
requires that the two low priority networks be completely isolated in every way.

Public network
Clients accessing a High Availability cluster typically come in over the customer
public network. While not entirely a VCS issue, a failure of a network component
blocking access to a server is the same as losing a server.

For example, connecting all servers in a cluster to a single large network switch
makes the network switch a single point of failure. Switching to a design with two
primary data center reduces overall impact of failure

Using VERITAS Cluster Server 9/13/01
Page 94

To enable VCS to handle failure of a server network port, network cable or
network switch port, enable IPMultiNIC. This allows “in box failover” of network
components. The IPMultiNIC configuration can place one port on a server to each
switch.

Adding a layer of client access switches further reduces the impact of failure. In
this manner, each switch can only affect a smaller percentage of client systems.

Disk Storage
 In their book on High Availability, “Blueprints for High Availability: Designing
Resilient Distributed Systems” (John Wiley and Sons, 2000), Evan Marcus and
Hal Stern make the very important point that “Power supplies usually have the
worst MTBF in a system, because they deal with line voltage, have fans and high-
stress analog parts, and are subject to wear and tear during power on/off.
However, there are only 6-8 power supplies in a single server, versus 100 or more
disks. Disks deserve your attention once you have first level of redundancy in
server power supplies.”

All critical data must have disk protection of some form. Simple backups are not
enough. If the application is critical enough to merit clustering, it requires
redundant disks! Disk failure protection can be in the form of RAID or mirroring.

Access to the storage device is as important as the disks themselves. When using
hardware RAID arrays, models with dual storage controllers reduce risk of a
controller loss. With dual controllers, most hosts can be configured to provide
dual paths to the controllers. For example, VERITAS Volume Manager provides
Dynamic Multi Path to load balance and provide for high availability access to
external storage arrays.

For systems using simple JBOD arrays, in many cases dual paths to the array may
not be possible. In this case, two arrays can provide protection from disk of
channel failure. For example, instead of a single 16 drive JBOD array on one
channel and mirroring inside the array, two 8-drive arrays on separate I/O
channels and mirroring between arrays will provide for disk and I/O channel
protection (as well as potentially increasing I/O capability).

Avoid Failover!
Failover in a cluster should be the absolute last resort. Failover implies an outage
to client systems and should be avoided. This means each server in the cluster
must be as reliable as possible. Standard availability enhancements like redundant
power supplies and mirrored boot disks should be utilized. The application itself
should be as robust as possible. Using clustering to “cover” for a poorly designed
application that is prone to routine crashes simply means you will suffer frequent
outages.

Using VERITAS Cluster Server 9/13/01
Page 95

Building a Solid Foundation
Building application availability can best be described as building layers. Each
layer provides the underlying foundation for the layer above. Compromising on
any layer significantly affects the layer above. The layers are illustrated below

System Availability, Scalability and Performance
Individual systems in a cluster must be configured to maximize availability,
scalability and performance to provide maximum availability to upper layers.
Seen from a user perspective, a system is down if it is failed due to a hardware
fault, offline for storage reconfiguration, or simply not responding in a timely
manner.

Individual system availability starts with simple items like redundant power and
cooling and providing adequate processor power for current utilization and near-
term projected growth.

Storage subsystems directly affect system availability and scalability. One
constant factor in nearly all systems is continued growth of storage requirements.
As storage systems have become larger and more complex, management of
storage becomes a greater challenge. Logical volume management with the
VERITAS Volume Manager (VxVM) is a key component to online storage
management. VxVM provides the capability to add and reconfigure storage with
zero system interruption. Addition of the VERITAS File System (VxFS) provides
a high performance journeled file system. VxFS significantly reduces system
recovery time following a failure. This capability shortens takeover time in a
failure scenario. VxVM and VxFS together are aptly named the VERITAS
Foundation Suite, as they provide a solid data management foundation.

System Availability,
Scalability and Performance

Data Protection

Application
Availability

Using VERITAS Cluster Server 9/13/01
Page 96

The last component is SANPoint Control. SANPoint Control simplifies
management of complex Storage Area Networks by providing automatic
discovery, visualization and zoning administration of SAN-connected devices.

Data Availability
Data availability refers to protecting critical corporate data with a properly
designed backup and recovery scheme. Proper data protection in a 24 x 7 world
has become increasingly difficult to architect, and increasingly important.
Crafting an architecture capable of performing backups with no impact to online
operations and capable of minimum time restores is a key factor in availability.
VERITAS NetBackup is the industry leader in enterprise backup. NetBackup can
leverage key technologies provided by the underlying Foundation Suite to address
online backup of critical data. These technologies include volume/file system
snapshots, block level incremental backups, mirror break off, and others.
NetBackup is further enhanced by application specific agents for major critical
database packages to provide transparent database backup and recovery.

Application Availability
Once the lower layers are properly addressed, a comprehensive application
availability architecture can be build using the VERITAS Cluster Server. As
documented in this paper, VCS is a robust, cross-platform application availability
solution designed to provide a framework for controlling business critical
applications.

Things to Avoid

Using Outside Name Services
Using outside services for critical cluster services makes HA services contingent
on the outside service. For example, using outside NIS or DNS for name
resolution and other lookups can make all HA services depend on the reliability of
the outside servers.

All name to IP mapping required to bring the cluster into service should be
maintained locally to prevent loss of NIS or DNS causing a cluster failure For
example, the hosts entry in /etc/nsswitch.conf should list files first.

If outside name service is required for admin reasons, make the service highly
available!

• Primary/Secondary DNS

• NIS Master/Slave

NIS presents a larger problem, as many services beyond hostname resolution can
rely on the NIS server. If NIS is an absolute requirement, several steps may be
used to increase reliability of the services.

Using VERITAS Cluster Server 9/13/01
Page 97

• Make each VCS node a NIS slave server. This removes outside network
issues from effecting NIS service. Updates to outside NIS masters are
automatically applied to the slave servers via yppush.

• Ensure NIS slave servers exist on multiple subnets each server is
connected to. In this way, loss of a single interface will not prevent access
to NIS services

NFS File Service
Many companies use NFS service to distribute application binaries rather than
installing on each server. This presents another problem, as loss of the NFS
service will render the High Availability servers far less than available. If NFS
service is a corporate requirement, the customer must ensure the NFS servers
themselves are highly available and all network infrastructure connecting the VCS
cluster to the NFS servers is highly available as well.

Using NFS may seem like it simplifies administration, but likely adds complexity
and risk to a High Availability cluster. It is recommended that application binaries
be installed and maintained on the cluster servers instead to reduce risk.

Using NFS in the Cluster
Using NFS within the cluster to mount file systems from one server to another is
highly discouraged. Many customers attempt to “utilize both servers” by having
each server NFS mount a file system exported by one system in the cluster. This
technique essentially makes one server in a cluster depend on another. This
dependency reduces overall cluster availability!

Using creative techniques such as loopback mounting and automounter do not
resolve the basic concept that a server in a cluster may not depend on another in
the cluster.

If parallel access to data is required, use an outside NFS servers, or nodes that are
not part of the failover group in question A more advanced solution is the
VERITAS SANPoint Foundation Suite/HA which implements a true SAN cluster
file system and volume manager on Solaris.

Cluster Configuration
The question “What is the recommended cluster configuration?” is often asked,
yet nearly impossible to answer. There is no right or wrong answer, only
“whatever best suits the customer needs”

Number of nodes
The recommended number of nodes in a cluster is the most common question
asked by prospective and current VCS users. It really boils down to what
functionality is required. Creating a 32-node cluster simply to have 32 nodes is
not worthwhile. Cluster size should be determined by application functionality.

Using VERITAS Cluster Server 9/13/01
Page 98

This means a cluster should contain enough systems to support a specific set of
applications. For example, an 8 node cluster supporting 8 or 10 instances of
Oracle. Adding additional nodes to support a completely unrelated Sybase
configuration simply adds cluster complexity as well as increased load by the
VCS daemons monitoring the resources and nodes. In a case like this, two
separate clusters, each with their own purpose and both monitored via the Cluster
Server Cluster Monitor GUI would be best.

On the other side of this discussion, if a service needs to be touched when another
service changes state, they should be in the same cluster. For example, if a
middleware application needs to be restarted when a database service is started,
placing all nodes in the same cluster makes using Service Group dependencies
and triggers easy.

If two clusters using different operating systems, such as NT and Solaris, or HP
and Solaris need to be interrelated, this is a function of the VERITAS Global
Cluster Manager. GCM allows “cross cluster event correlation”. Different
operating systems may not be mixed in a single VCS cluster. But GCM can span
multiple clusters of the same or different operating systems and allow an event in
one cluster to trigger an action in another. For example, resetting an application
running on an NT cluster when a backend database on an HP cluster is restarted.
Please see www.veritas.com for more information on Global Cluster Manager.

Storage Configuration
Storage Area Networks allow extreme flexibility when implementing High
Availability clusters. Nodes can be added and removed with no interruption to
running systems. Use of a SAN also allows creating larger failover configurations
to allow cascading failover or manual load balancing between systems.

