There are various environments where you might use this function of automatically restarting servers. You can restart the server1 server process in a stand-alone WebSphere Application Server environment, for example. Here is a list of processes you might consider restarting:

· The server1 process on a stand-alone Application Server

· The dmgr process on a deployment manager node

· The nodeagent server process on any Application Server node in a deployment manager cell

· The jmsserver process on the application server node, if the Application Server node has the embedded messaging feature

· The IBM HTTP Server process

· The IBM HTTP Administration process

· The WebSphere Embedded Messaging Publish And SubscribeWAS_node_name_jmsserver process, if the Application Server node has the embedded messaging feature

· The WebSphere Embedded Messaging Publish And SubscribeWAS_node_name_server1 process, if the Application Server node has the embedded messaging feature

You can create Windows services during installation, using the installation wizard. The wizard lets you create services for these servers:

· The server1 process in a stand-alone base product environment, defined as a manually started (versus automatic) service

· The IBM HTTP Server process and the IBM HTTP Administration process, defined as automatically started services when you choose to install the IBM HTTP Server feature during the base product installation

· The dmgr process on a deployment manager node, defined as a manually started (versus automatic) service

The installation wizard does not provide a way to create a service for a node agent because the deployment manager instantiates each node agent after installation when you add an application server node to the deployment manager cell. For this reason, you must manually create a function that automatically starts a failed nodeagent server process.

You must manually create a shell script that automatically starts any of the processes previously mentioned, on a UNIX-based operating system. Each Windows service or UNIX shell script controls a single process, such as a stand-alone WebSphere Application Server instance. Multiple stand-alone Application Server processes require multiple Windows services or UNIX scripts, which you can define.

In a Network Deployment environment, the addNode or startNode command starts a single unmonitored node agent process only, and does not start all of the processes that you might define on the node. While running, the node agent monitors and restarts Application Server processes on that node, on either a Windows or a UNIX-based platform. Each Application Server process has MonitoringPolicy configuration settings that the node agent uses when monitoring and restarting the process.

It is recommended that you set up a monitored node agent process manually, either through a Windows service, or through the rc.was example shell script on UNIX-based platforms. The operating system monitors and automatically restarts the node agent server, nodeagent, if the process terminates abnormally, which means that it stops without going through a normal shutdown. It is also recommended that you set up the deployment manager server, dmgr, as a monitored process. As mentioned, you can do this during installation on a Windows platform. On a UNIX-based platform, use the rc.was example shell script to set up the deployment manager dmgr server as a monitored process.

If you do not install the WebSphere Application Server base product or the WebSphere Application Server Network Deployment product as a Windows service during installation, you can use the WASService.exe command line tool, in the install_root/bin directory, to do so at a later time. You can use the tool to add any WebSphere Application Server process as a Windows service. The operating system can then monitor each server process, and restart the server if it stops.

Steps for this task

1. (Optional) Use the installation wizard to set up a Windows service to automatically monitor and restart processes related to the WebSphere Application Server product.

· Perform the following procedure from the installation wizard for the Network Deployment product:

a. Click Run WebSphere Application Server Network Deployment as a service.

b. Enter your user ID and password and click Next.

The installation wizard creates the following service during the installation:

IBM WebSphere Application Server V5 - dmgr
The IBM WebSphere Application Server V5 - dmgr service controls the dmgr server process, which is the deployment manager server that administers the cell.

2. (Optional) After installing, use the WASService.exe tool to manually define the nodeagent server process as a Windows service.

You can use the same tool to manually define a Windows service for another installation or configuration instance of either the base WebSphere Application Server product or the Network Deployment product.

3. (Optional) After installing, set up a UNIX-based shell script to automatically monitor and restart the nodeagent server or any other related server process.

. Locate the rc.was example shell script, which is in the install_root/bin directory.

a. Create a new shell script for each process that the operating system is to monitor and restart.

b. Edit each shell script according to comments in its header, which provide instructions for identifying a WebSphere Application Server process.

c. Edit the inittab table of the operating system, to add an entry for each shell script you have created.

Comments in the header of the rc.was script show a sample inittab entry line for adding the script. This inittab entry causes the UNIX-based system to call each shell script whenever the system initializes. As it runs, each shell script monitors and starts the server process you specified.

4. Similar to a Windows service, each shell script monitors and restarts an individual WebSphere Application Server server process in a stand-alone environment, or a node agent or deployment manager process in an WebSphere Application Server Network Deployment environment.

Results

You can also use the Start the Server and Stop the Server commands to control the IBM WebSphere Application Server on a Windows system. Access these commands from the Start menu, clicking Start > Programs > IBM WebSphere > Application Server V5.0.

You can also use the Start the Manager and Stop the Manager commands to control the Network Deployment dmgr server on a Windows system. Access these commands from the Start menu, clicking Start > Programs > IBM WebSphere > Deployment Manager V5.0.

Note:
Processes started by a startServer (or startNode or startManager) command are not running as monitored processes, regardless of how you have configured them.

For example, you can configure a base application server as a WebSphere Application Server Windows service. However, if you start the application server instance using the startServer command, the Windows system does not monitor or restart the Application Server because it was not started as a Windows service. The same is true on UNIX-based platforms. You must start the server process with a shell script based on the example rc.was script, to have the server running as a monitored process.

__

startNode command

The startNode command reads the configuration file for the node agent process and constructs a launch command. Depending on the options that you specify, the startNode command creates a new Java virtual machine (JVM) API to run the agent process, or writes the launch command data to a file. You must run this command from the install_root/bin directory of a WebSphere Application Server installation.

Syntax
startNode [options]

Parameters
The following options are available for the startNode command:

-nowait

Tells the startNode command not to wait for successful initialization of the node agent process.

-quiet

Suppresses the progress information that the startNode command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before node agent initialization times out and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for node agent status callback.

-script [<script fileName>]

Generates a launch script with the startNode command instead of launching the node agent process directly. The launch script name is an optional argument. If you do not provide the launch script name, the default script file name is start_<nodeName>, based on the name of the node.

-J-<java_option>

Specifies options to pass through to the Java interpreter.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-?

Prints a usage statement.

Examples
The following examples demonstrate correct syntax:

startNode

startNode -script (produces the start_node.bat or .sh file)

startNode -trace (produces the startnode.log file)

startServer command

The startServer command reads the configuration file for the specified server process and starts the server. Depending on the options you specify, you can launch a new Java virtual machine (JVM) API to run the server process, or write the launch command data to a file. You can run this command from the install_root/bin directory of a WebSphere Application Server installation, or a Network Deployment installation.

Syntax
startServer <server> [options]

where server is the name of the configuration directory of the server you want to start. This argument is required.

Parameters
The following options are available for the startServer command:

-nowait

Tells the startServer command not to wait for successful initialization of the launched server process.

-quiet

Suppresses the progress information that the startServer command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information is written.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information to the log file for debugging purposes.

-timeout <seconds>

Specifies the waiting time before server initialization times out and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for server status callback.

-script [<script fileName>]

Generates a launch script with the startServer command instead of launching the server process directly. The launch script name is an optional argument. If you do not supply the launch script name, the default script file name is start_<server> based on the <server> name passed as the first argument to the startServer command.

-J <java_option>

Specifies options to pass through to the Java interpreter.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-?

Prints a usage statement.

Examples
The following examples demonstrate correct syntax:

startServer server1

startServer server1 -script (produces the start_server1.bat or .sh files)

startServer server1 -trace (produces the startserver.log file)

startManager command

The startManager command reads the configuration file for the Network Deployment manager process and constructs a launch command. Depending on the options you specify, the startManager command launches a new Java virtual machine (JVM) API to run the manager process, or writes the launch command data to a file. You must run this command from the install_root/bin directory of a Network Deployment installation.

Syntax
startManager [options]

Parameters
The following options are available for the startManager command:

-nowait

Tells the startManager command not to wait for successful initialization of the deployment manager process.

-quiet

Suppresses the progress information that the startManager command prints in normal mode.

-logfile <fileName>

Specifies the location of the log file to which information gets written.

-replacelog

Replaces the log file instead of appending to the current log.

-trace

Generates trace information into a file using the startManager command for debugging purposes.

-timeout <seconds>

Specifies the waiting time before deployment manager initialization times out and returns an error.

-statusport <portNumber>

Specifies that an administrator can set the port number for deployment manager status callback.

-script [<script fileName>]

Generates a launch script with the startManager command instead of launching the deployment manager process directly. The launch script name is an optional argument. If you do not provide the launch script name, the default script file name is <start_dmgr>.

-J-<java_option>

Specifies options to pass through to the Java interpreter.

-username <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -user option.

-user <name>

Specifies the user name for authentication if security is enabled in the server. Acts the same as the -username option.

-password <password>

Specifies the password for authentication if security is enabled in the server.

-help

Prints a usage statement.

-?

Prints a usage statement.

Examples
The following examples demonstrate correct syntax:

startManager

startManager -script (produces the start_dmgr.bat or .sh file)

startManager -trace (produces the startmanager.log file)

WASService command

The WASService command line tool lets you add any WebSphere Application Server server process as a Windows service. WebSphere Application Server server processes that you could add as Windows services include:

· Any base Application Server, such as the default server1 process

· The jmsserver process that exists on a base Application Server node when you have installed the embedded messaging server feature and the node is part of a deployment manager cell

· The nodeagent process on a base Application Server node that is part of a deployment manager cell

· The deployment manager process, dmgr, on the Network Deployment node

The WASService.exe command file is located in the bin subdirectory of the install_root directory.

Starting an existing service
WASService.exe [-start] service_name

Creating a service
WASService.exe -add service_name
 -serverName Server
 [-wasHome install_root]

 [-configRoot configuration_repository_directory]

 [-startArgs additional_start_arguments]

 [-stopArgs additional_stop_arguments]

 [-userid execution id -password password]

 [-logFile service_log_file]

 [-logRoot server_log_directory]

 [-userScript path\setupCmdLine.bat]

 [-restart true | -restart false]

Deleting a service
WASService.exe -remove service_name
Stopping a running service
WASService.exe -stop service_name
Retrieving service status
WASService.exe -status service_name
Parameters
Supported arguments include:

-add service_name

Creates a service named service_name.

-configRoot configuration_repository_directory
Optional parameter that identifies the configuration directory of the installation root directory of a WebSphere Application Server product.

-logFile service_log_file

Optional parameter that identifies a log file that the WASService command uses to record its activity.

-logRoot server_log_directory

Optional parameter that identifies a wsinstance server log directory that the WASService command uses to determine if the server is running.

-remove service_name

Deletes the specified service.

-restart true | false

Restarts the existing service automatically if tyhe service fails when set to true.

-server Server_name

Identifies the server that the service controls.

-start service_name

Starts the existing service. The -start parameter is the default parameter; you can omit the -start parameter and still start the service.

-startArgs additional_start_arguments
Optional parameter that identifies additional parameters.

-status service_name

Returns the current status of the service, which includes whether the service is running or stopped.

-stop service_name

Stops the specified service.

-stopArgs additional_stop_arguments
Optional parameter that identifies additional parameters.

-userid execution_ID -password password
Optional parameters that identify a privileged userid and password.

-userScript path\setupCmdLine.bat
Optional parameter that identifies a setupCmdLine.bat command file that the WASService command uses to understand wsinstance nodes.

-wasHome install_root

Optional parameter that identifies the installation root directory of the WebSphere Application Server product.

Creating a nodeagent service
This example creates a service called IBMWAS5Service - nodeagent that starts the nodeagent process:

WASService -add nodeagent

 -servername nodeagent

 -wasHome "D:\Program Files\WebSphere\AppServer"

 -logfile "D:\Program Files\WebSphere\AppServer\logs\nodeagent\startServer.log"

 -restart true

Creating a deployment manager service
This example creates a service called IBMWAS5Service - dmgr that starts the dmgr process:

WASService -add dmgr

 -servername dmgr

 -wasHome "D:\Program Files\WebSphere\DeploymentManager"

 -logfile "D:\Program Files\WebSphere\DeploymentManager\logs\dmgr\startServer.log"

 -restart true

Creating an Application Server service
This example creates a service called IBMWAS5Service - server2 that starts an Application Server process:

WASService -add server2

 -servername server2

 -wasHome "D:\Program Files\WebSphere\AppServer"

 -logfile "D:\Program Files\WebSphere\AppServer\logs\dmgr\startServer.log"

 -restart true

Configuring WebSphere 5.0

Configuration documents

WebSphere Application Server stores configuration data for servers in several documents in a cascading hierarchy of directories. The configuration documents describe the available application servers, their configurations, and their contents. Most configuration documents have XML content.

Hierarchy of directories of documents

The cascading hierarchy of directories and the documents' structure support multi-node replication to synchronize the activities of all servers in a cell. In a Network Deployment environment, changes made to configuration documents in the cell repository, are automatically replicated to the same configuration documents that are stored on nodes throughout the cell.

At the top of the hierarchy is the cells directory. It holds a subdirectory for each cell. The names of the cell subdirectories match the names of the cells. For example, a cell named cell1 has its configuration documents in the subdirectory cell1.

On the Network Deployment node, the subdirectories under the cell contain the entire set of documents for every node and server throughout the cell. On other nodes, the set of documents is limited to what applies to that specific node. If a configuration document only applies to node1, then that document exists in the configuration on node1 and in the Network Deployment configuration, but not on any other node in the cell.

Each cell subdirectory has the following files and subdirectories:

· The cell.xml file, which provides configuration data for the cell

· Files such as security.xml, virtualhosts.xml, resources.xml, and variables.xml, which provide configuration data that applies across every node in the cell

· The clusters subdirectory, which holds a subdirectory for each cluster defined in the cell. The names of the subdirectories under clusters match the names of the clusters.

Each cluster subdirectory holds a cluster.xml file, which provides configuration data specifically for that cluster.

· The nodes subdirectory, which holds a subdirectory for each node in the cell. The names of the nodes subdirectories match the names of the nodes.

Each node subdirectory holds files such as variables.xml and resources.xml, which provide configuration data that applies across the node. Note that these files have the same name as those in the containing cell's directory. The configurations specified in these node documents override the configurations specified in cell documents having the same name. For example, if a particular variable is in both cell- and node-level variables.xml files, all servers on the node use the variable definition in the node document and ignore the definition in the cell document.

Each node subdirectory holds a subdirectory for each server defined on the node. The names of the subdirectories match the names of the servers. Each server subdirectory holds a server.xml file, which provides configuration data specific to that server. Server subdirectories might hold files such as security.xml, resources.xml and variables.xml, which provide configuration data that applies only to the server. The configurations specified in these server documents override the configurations specified in containing cell and node documents having the same name.

· The applications subdirectory, which holds a subdirectory for each application deployed in the cell. The names of the applications subdirectories match the names of the deployed applications.

Each deployed application subdirectory holds a deployment.xml file that contains configuration data on the application deployment. Each subdirectory also holds a META-INF subdirectory that holds a J2EE application deployment descriptor file as well as IBM deployment extensions files and bindings files. Deployed application subdirectories also hold subdirectories for all .war and entity bean .jar files in the application. Binary files such as .jar files are also part of the configuration structure.

An example file structure is as follows:

cells
 cell1
 cell.xml resources.xml virtualhosts.xml variables.xml security.xml

 nodes
 nodeX
 node.xml variables.xml resources.xml serverindex.xml

 serverA
 server.xml variables.xml

 nodeAgent
 server.xml variables.xml

 nodeY
 node.xml variables.xml resources.xml serverindex.xml

 applications
 sampleApp1
 deployment.xml

 META-INF
 application.xml ibm-application-ext.xml ibm-application-bnd.xml

 sampleApp2
 deployment.xml

 META-INF
 application.xml ibm-application-ext.xml ibm-application-bnd.xml

Changing configuration documents

You can use one of the administrative tools (console, wsadmin, Java APIs) to modify configuration documents or edit them directly. It is preferable to use the administrative console because it validates changes made to configurations. "Configuration document descriptions" states whether you can edit a document using the administrative tools or must edit it directly.

Configuration document descriptions

Most configuration documents have XML content. The table below describes the documents and states whether you can edit them using an administrative tool or must edit them directly.

If possible, edit a configuration document using the administrative console because it validates any changes that you make to configurations. You can also use one of the other administrative tools (wsadmin or Java APIs) to modify configuration documents. Using the administrative console or wsadmin scripting to update configurations is less error prone and likely quicker and easier than other methods.

However, you cannot edit some files using the administrative tools. Configuration files that you must edit manually have an X in the Manual editing required column in the table below.

Document descriptions
	Configuration file
	Locations
	Purpose
	Manual editing required

	admin-authz.xml
	config/cells/cell_name/
	Define a role for administrative operation authorization.
	X

	app.policy
	config/cells/cell_name/nodes/node_name/
	Define security permissions for application code.
	X

	cell.xml
	config/cells/cell_name/
	Identify a cell.
	

	cluster.xml
	config/cells/cell_name/clusters/cluster_name/
	Identify a cluster and its members and weights.

This file is only available with the Network Deployment product.
	

	deployment.xml
	config/cells/cell_name/applications/application_name/
	Configure application deployment settings such as target servers and application-specific server configuration.
	

	filter.policy
	config/cells/cell_name/
	Specify security permissions to be filtered out of other policy files.
	X

	integral-jms-authorizations.xml
	config/cells/cell_name/
	Provide security configuration data for the integrated messaging system.
	X

	library.policy
	config/cells/cell_name/nodes/node_name/
	Define security permissions for shared library code.
	X

	multibroker.xml
	config/cells/cell_name/
	Configure a data replication message broker.
	

	namestore.xml
	config/cells/cell_name/
	Provide persistent name binding data.
	X

	naming-authz.xml
	config/cells/cell_name/
	Define roles for a naming operation authorization.
	X

	node.xml
	config/cells/cell_name/nodes/node_name/
	Identify a node.
	

	pmirm.xml
	config/cells/cell_name/
	Configure PMI request metrics.
	X

	resources.xml
	config/cells/cell_name/

config/cells/cell_name/nodes/node_name/

config/cells/cell_name/nodes/node_name/servers/server_name/
	Define operating environment resources, including JDBC, JMS, JavaMail, URL, JCA resource providers and factories.
	

	security.xml
	config/cells/cell_name/
	Configure security, including all user ID and password data.
	

	server.xml
	config/cells/cell_name/nodes/node_name/servers/server_name/
	Identify a server and its components.
	

	serverindex.xml
	config/cells/cell_name/nodes/node_name/
	Specify communication ports used on a specific node.
	

	spi.policy
	config/cells/cell_name/nodes/node_name/
	Define security permissions for service provider libraries such as resource providers.
	X

	variables.xml
	config/cells/cell_name/

config/cells/cell_name/nodes/node_name/

config/cells/cell_name/nodes/node_name/servers/server_name/
	Configure variables used to parameterize any part of the configuration settings.
	

	virtualhosts.xml
	config/cells/cell_name/
	Configure a virtual host and its MIME types.
	

