
SG24-5849-00

International Technical Support Organization

www.redbooks.ibm.com

MQSeries Version 5.1
Administration and Programming Examples

Dieter Wackerow, David Armitage, Tony Skinner

http://www.redbooks.ibm.com

MQSeries Version 5.1
Administration and Programming Examples

December 1999

SG24-5849-00

International Technical Support Organization

© Copyright International Business Machines Corporation 1999. All rights reserved.
Note to U.S Government Users – Documentation related to restricted rights – Use, duplication or disclosure is
subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

First Edition (December 1999)

This edition applies to the following products:

• MQSeries for AIX Version 5.1

• MQSeries for OS/2 Warp Version 5.1

• MQSeries for Windows NT Version 5.1

Comments may be addressed to:
IBM Corporation, International Technical Support Organization
Dept. HZ8 Building 678
P.O. Box 12195
Research Triangle Park, NC 27709-2195

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

Before using this information and the product it supports, be sure to read the general information in
Appendix G, “Special Notices” on page 237.

Take Note!

Contents

Preface . vii
The Team That Wrote This Redbook . vii
Comments Welcome . viii

Chapter 1. About MQSeries Version 5.1 . 1
1.1 The MQSeries Family . 1
1.2 Platforms . 2
1.3 What’s New in MQSeries Version 5.1 . 2
1.4 Publish/Subscribe . 4
1.5 MQSeries and Java . 4

1.5.1 Example . 5
1.5.2 Connection Examples. 5

Chapter 2. About Clusters . 7
2.1 Why Clusters? . 8
2.2 Cluster Concept . 11
2.3 A Routing Example. 16
2.4 How Clusters Work. 17

2.4.1 Example with Two Queue Managers. 20
2.4.2 Example with Three Queue Managers . 21
2.4.3 Example with Four Queue Managers in Two Networks 24

2.5 RUNMQSC Commands for Clusters . 26

Chapter 3. MQSeries for Windows NT Version 5.1 33
3.1 Installation . 34
3.2 MQSeries First Steps . 38
3.3 Default Configuration . 39
3.4 MQSeries Postcard . 42
3.5 MQSeries Explorer . 45
3.6 MQSeries Services. 47
3.7 MQSeries API Exerciser . 49

Chapter 4. Creating a Cluster with the MQExplorer 55
4.1 Creating the Queue Managers . 57
4.2 Creating a Cluster with Two Repository Queue Managers 63
4.3 Joining Queue Managers to a Cluster. 70
4.4 Working with Local Queues in a Cluster . 78
4.5 Creating a Shared Cluster Queue. 83
4.6 Creating a Second Cluster Queue . 87
4.7 Working with Clusters. 89

4.7.1 Putting and Getting Messages . 89
© Copyright IBM Corp. 1999 iii

4.7.2 Disassembling the Environment with the MQ Explorer 90
4.7.3 Stopping a Cluster . 90
4.7.4 Showing a Cluster . 91
4.7.5 Starting a Cluster . 92
4.7.6 Summary . 92

Chapter 5. Creating a Cluster with Scripts . 95
5.1 Some Comments about the Listener. 104
5.2 Some Comments about Cluster Objects . 104

Chapter 6. Workload Management . 107
6.1 Controlling the Workflow . 108
6.2 A Workload Distribution Example . 109

6.2.1 Getting Prepared . 109
6.2.2 Clearing a Cluster Queue . 110
6.2.3 Putting Using Bind On Open. 111
6.2.4 Putting Using Bind Not Fixed . 114
6.2.5 Putting to a Local Cluster Queue . 115

6.3 Writing a Workload Management Exit . 116
6.3.1 About the Example . 116
6.3.2 Commented Program Listing for Exit WLlogger.c 118

Chapter 7. MQSeries Administration and Service 123
7.1 Experiments with Runmqsc and Clusters . 125

7.1.1 Creating a Queue Manager . 126
7.1.2 Starting the Listener . 127
7.1.3 Starting the Channel Initiator . 128
7.1.4 Connecting QM_5 to the Existing Cluster 129

7.2 Experiments with MQSeries Services . 132
7.2.1 Automatic or Manual Start-up . 133
7.2.2 How to Start a Queue Manager Manually 134
7.2.3 Working with Queue Manager Properties 135
7.2.4 Creating a Queue Manager from the Services GUI 137
7.2.5 Adding a Trigger Monitor . 139
7.2.6 Using the MQSeries Alert Monitor. 142

7.3 Using MQSeries Control Commands with the New GUIs 144
7.4 Remote Administration . 145

Chapter 8. Web Administration . 147
8.1 Enabling Web Administration . 148
8.2 Logging in . 149
8.3 Getting Help . 151
8.4 Using Commands . 152
8.5 Using Scripts . 154
iv MQSeries Version 5.1 Administration and Programming Examples

Chapter 9. Using the Performance Monitor . 159
9.1 Example 1: Track Cluster Queues . 160
9.2 Example 2: Check Cluster Behavior . 164

Chapter 10. File Transfer Programs . 167
10.1 Design . 168

10.1.1 putFile . 168
10.1.2 getFile . 169

10.2 Input Parameters . 169
10.3 Message Types . 171

10.3.1 Header Message . 171
10.3.2 Data Message . 171
10.3.3 Trailer Message . 171
10.3.4 Instruction Message . 171
10.3.5 Trigger Message. 172

10.4 mqfm_defs.h . 173
10.5 putMsg.c . 174
10.6 putFile.c . 178
10.7 getFile.c . 192

Chapter 11. MQSeries Security Changes . 203
11.1 MQSeries for Windows NT . 203
11.2 MQSeries Client Identification . 203
11.3 Long User IDs . 204
11.4 Authorization Check . 205
11.5 Security in Clusters . 208

Chapter 12. Using Dynamic Queues . 209
12.1 Temporary Dynamic Queues . 209

12.1.1 Creating a Temporary Dynamic Queue 209
12.1.2 Writing to a Temporary Dynamic Queue 211
12.1.3 Getting from a Temporary Dynamic Queue 212

12.2 Report Messages . 213
12.3 Permanent Dynamic Queues . 213
v

Appendix A. Sample Configuration Output . 215

Appendix B. Log File Created by crt_str_all . 217

Appendix C. Source Code for clusput.c . 221

Appendix D. Source Code for fastget.c . 227

Appendix E. MQSeries Processes . 233

Appendix F. Diskette Contents . 235

Appendix G. Special Notices . 237

Appendix H. Related Publications. 241
H.1 International Technical Support Organization Publications 241
H.2 Redbooks on CD-ROMs . 241
H.3 Other Publications . 242

How to Get IBM Redbooks . 243
IBM Redbooks Fax Order Form . 244

List of Abbreviations. 245

Index . 247

IBM Redbooks Evaluation . 255
vi MQSeries Version 5.1 Administration and Programming Examples

Preface

This redbook provides guidelines and hints for designing and managing
networks used with MQSeries. It also helps you design and develop
application programs that use the features of MQSeries Version 5.1. Even
though the examples have been developed for the Windows NT platform, they
apply to any other platform that supports MQSeries Version 5.1. This book is
based on class exercises for an ITSO workshop and explains the following:

• How to create and manager clusters

• How to use workload management (load balancing)

• How to use the new GUIs to administer MQSeries on Windows NT

• How to use the Web Administration feature

• How to monitor queues using the Windows NT Performance Monitor

• How to write a workload management exit

• How to use MQSeries for file transfer

• How to use dynamic queues

• Changes in MQSeries security

The first chapter contains an overview of the functions released with
MQSeries Version 5.1. The other chapters are dedicated to specific functions.
They include programming hints and examples as well as guidelines for
MQSeries administration. This redbook comes with a diskette that contains
the source code of all examples.

The Team That Wrote This Redbook

This redbook was produced by a team of specialists from around the world
working at the International Technical Support Organization, Raleigh Center.

Dieter Wackerow is the MQSeries expert at the International Technical
Support Organization, Raleigh Center. His areas of expertise include
application design and development, performance evaluations, capacity
planning, and modelling of computer systems and networks. He also wrote a
simulator for banking hardware and software. He teaches classes and writes
on performance issues and application development.

David Armitage is from the IBM Transarc Laboratory in Sydney, Australia. He
has 15 years of experience in level 2 support for VM, Series1, AIX (including
AIX/370), TCP/IP. DCE, Encina, and distributed CICS. For several years he
© Copyright IBM Corp. 1999 vii

was involved in service delivery and architecture consulting for distributed
CICS and MQSeries in the Asia/Pacific region. He also developed courses
and taught extensively in Australia, New Zealand and Japan. David holds a
Science degree in Mathematics from the University of Sydney.

Tony Skinner is a System Designer and IT Specialist in Canada. He has 32
years of experience in IT with IBM. His areas of expertise include design of
On-line Transaction Processing (OLTP) and database systems and
applications. He has written extensively on CICS and MQSeries.

Thanks to the following people for their invaluable contributions to this project:

Alexandros Alexandrakis
IBM United Kingdom

Andrew Banks
IBM Hursley, England

Mike Brady
IBM Transarc, Australia

Comments Welcome

Your comments are important to us!

We want our redbooks to be as helpful as possible. Please send us your
comments about this or other redbooks in one of the following ways:

• Fax the evaluation form found in “IBM Redbooks Evaluation” on page 255
to the fax number shown on the form.

• Use the online evaluation form found at http://www.redbooks.ibm.com/

• Send your comments in an internet note to redbook@us.ibm.com
viii MQSeries Version 5.1 Administration and Programming Examples

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Chapter 1. About MQSeries Version 5.1

MQSeries already speeds implementation of distributed applications by
simplifying application development and testing. With Version 5.1 for
distributed platforms and Version 2.1 for MVS/ESA, MQSeries takes the next
steps: It simplifies the installation and deployment of MQSeries itself and it
enables quicker rollout and scale-up of business-critical applications across
the enterprise.

1.1 The MQSeries Family

IBM's new family of MQSeries products addresses integration from a
business as well as an information technology (IT) perspective. The product
family offers information systems that support the way you work, that fit in
with your business processes and workflow, and that deliver real business
advantages.

The family of Business Integration solutions, based around IBM's
award-winning MQSeries software, consists of:

MQSeries: The leader in message-oriented middleware for message-based
applications. The base MQSeries product totally and reliably
connects any application, or system, to any other. There are several
redbooks available about MQSeries. Refer to Appendix H.1,
“International Technical Support Organization Publications” on page
241 for the titles.

MQSeries Integrator: Powerful message brokering that centralizes
knowledge of the enterprise (like business rules and application
data formats) in a central hub. It makes it much quicker and simpler
to distribute data relating to business events, and integrate
applications to build new business.

MQSeries Integrator software enables integration of applications
and systems into robust, flexible, and scalable information networks.
Based upon MQSeries messaging and queuing capabilities,
MQSeries Integrator features intelligent message routing that
directs data according to conditions set by the business, and
message formatting enables applications to exchange information.
Its GUI allows users to perform integration tasks quickly and easily.
Preconfigured templates for major packaged applications and
e-business extensions are available. This product is now available
under IBM terms and conditions worldwide. IBM will continue to add
Business Integration capabilities to MQSeries Integrator and
© Copyright IBM Corp. 1999 1

provide a route for IBM Business Partners to offer additional
functionality.

MQSeries Workflow: Aligns and integrates your organization's resources
and capabilities with your business strategies, accelerating process
flow, cutting costs, eliminating errors and improving workgroup
productivity.

MQSeries Workflow is a workflow management middleware offering
that automates workflow between applications. It automates
business processes involving people and applications to give
organizations more control of their business activities. MQSeries
Workflow helps you in daily business operations, planning, and
management, to align and integrate resources and applications, to
improve efficiency, and to gain higher market share. In addition, it
enables the design of applications tailored to your business needs.

1.2 Platforms

MQSeries Version 5.1 runs on the following platforms:

• MQSeries for AIX, V5.1: RS/6000 running AIX 4.2 or 4.3

• MQSeries for HP-UX, V5.1: HP machines or Stratus Continuum, all
running HP-UX V10.20 or V11.0

• MQSeries for Sun Solaris, V5.1: SunSPARC or Sun UltraSPARC —
desktop or server running

• Sun Solaris V2.6 or Sun Solaris 7

• MQSeries for OS/2 Warp, V5.1: Intel or compatible systems capable of
running OS/2 Warp V4.0

• MQSeries for Windows NT, V5.1: Intel or compatible systems capable of
running Windows NT, V4.0

Some Version 5.1 features, such as clusters are also available with MQSeries
for OS/390 Version 2.1 and will be available with MQSeries for AS/400
Version 5.1.

1.3 What’s New in MQSeries Version 5.1

The single most important new feature is clustering, which includes dynamic
workload management, also referred to as load balancing. This feature also
greatly reduces the administrative work of defining MQSeries objects, such
as channels, remote queue definitions and transmission queues. Chapter 2,
2 MQSeries Version 5.1 Administration and Programming Examples

“About Clusters” on page 7, Chapter 4, “Creating a Cluster with the
MQExplorer” on page 55, and Chapter 5, “Creating a Cluster with Scripts” on
page 95 are dedicated to clusters.

Users of MQSeries for Windows NT can take advantage of additional great
features. MQSeries for Windows NT Version 5.1 is tightly integrated with the
operating system. New GUIs make the administration of MQSeries on this
platform much easier. You can even manage queues over the Web. Also,
MQSeries First Steps provides a feature that automatically creates a cluster
queue manager and an installation verification program that you can use to
send messages from one queue manager to another without any additional
definitions. The MQSeries for Windows NT functions are described in detail in
this book.

The following is a summary of the new features in Version 5.1:

• Clusters (or groups) of queue managers dynamically share workload
among themselves, balancing workload and rerouting if a system
component fails or network path becomes unavailable.

• Administration of clusters of queue managers is made simpler and quicker
and with less likelihood of operator error.

• Queue managers in the same cluster can be on different platforms or
physically remote from one another.

• Publish/subscribe function ensures people and applications receive
information on their chosen subjects.

• Subscribers specifying topics of interest have great flexibility and can
specify not just a name but a range of names, "wild card", or just prefixes,
for example.

• Publish/subscribe takes advantage of the robust messaging features of
MQSeries, so delivery is assured, and transactional integrity is maintained
when published information updates corporate databases.

• MQSeries for Windows NT uses the Windows NT Performance Monitor,
allows valid Windows NT user IDs, uses the Windows NT registry for
storing configuration data, and provides a set of Component Object Model
(COM) classes that allow ActiveX applications to access MQSeries
programming interfaces.

• Also for Windows NT there are graphical tools and applications for
installing, administering, and exploring the product, and a Web-based
administration server.

• Message queues can be up to 2 GB.
Chapter 1. About MQSeries Version 5.1 3

• Scalability and performance improvements include multiple application
processes that speed throughput, and an improvement for persistent
critical messages.

• Support for the new environments of HP-UX Version 11 and AIX Version
4.3, demonstrating IBM commitment to support the latest versions of the
most popular platforms.

• Improved Java programming interface, and the Java client and bindings
are combined in a single Java package to make the task of programming
simpler.

• MQSeries for AS/400 will be enhanced to provide functional parity with the
other MQSeries V5.1 products on UNIX platforms.

1.4 Publish/Subscribe

This MQSeries release introduces standard implementation of a new
messaging model for applications: Publish and Subscribe, sometimes known
as Event Services. It enables users to register interest in particular sets of
information and then to receive such information when it becomes available.
The Publish/Subscribe model provides direction in that the publisher of data
need have no prior knowledge about the receivers of such data and vice
versa. Subject to authorities, publishers may start or cease, and applications
may create, vary or delete subscriptions without the need for administrative
action. Publish/Subscribe exploits the strengths of the existing MQSeries
infrastructure. Applications can combine Publish/Subscribe with other
messaging calls and other subsystems (such as, databases) and have the
same choice of qualities of service (non-persistent, persistent or
transactional) as in other MQSeries applications.

This facility is available for MQSeries on the AIX, Sun Solaris, HP-UX and
Windows NT platforms.

Note: Publish/Subscribe is available on the Internet. It is not on the product
CD.

1.5 MQSeries and Java

In MQSeries Version 5.1, the MQSeries classes for Java are repacked to JAR
files. There is one JAR file per transport option:

• com.ibm.mq.jar for client support

• com.ibm.mqbind.jar for bindings support
4 MQSeries Version 5.1 Administration and Programming Examples

• com.ibm.mq.iiop.jar for VisiBroker support

You must explicitly set the required JAR files in the classpath. The root Java
directory must also be included for properties files.

1.5.1 Example
classpath=%CLASSPATH%;

c:\mqm\java\lib\com.ibm.mq.jar;
c:\mqm\java\lib\com.ibm.mqbind.jar;
c:\mqm\java\lib;

mqm\lava\lib is the properties file directory.

Include in your Java programs (applets, servlets, applications) the following
statement:

import com.ibm.mq.*

1.5.2 Connection Examples
1. Bindings connection

MQQueueManager = new MQQueueManager("ARROW");

2. Client connection

MQEnvironment.hostname = "arrow.raleigh.ibm.com";
MQQueueManager = new MQQueueManager("ARROW");

3. VisiBroker connection

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERT,
MQC_TRANSPORT_VISIBROKER);

MQEnvironment.hostname = "arrow.raleigh.ibm.com";
MQQueueManager = new MQQueueManager("ARROW");
Chapter 1. About MQSeries Version 5.1 5

6 MQSeries Version 5.1 Administration and Programming Examples

Chapter 2. About Clusters

Clusters are groups of machines connected together. Even multiple queue
managers on a single processor can build or be part of a cluster. Almost any
collection of queue managers could be described as a cluster. Examples are
IBM SP2, IBM Parallel Sysplex, and racks of Intel processors. More generally,
clusters are described as WANs, LANs, Internets or intranets.

Figure 1. Clusters

What are we trying to achieve with MQSeries cluster support?

• We want to process very high message rates.

• We have to process very large numbers of messages.

• We want a single name space to describe queues and no conflict between
names.

• We want a single system to control and administer.

• The system should always be available.

It is also important to remember the benefits for administration, even if no
failover or scalability from multiple queue instances are required. Clusters
allow for simple, scalable administration. Since there are fewer resources to
define, there are fewer matching fields to enter, which reduces the
opportunity to make errors. We will show that this is also valuable in small
configurations.

Here are the reasons for reduced MQSeries administration:

• Communication channels are created automatically.

• Queues are administered cluster-wide.

• You don’t have to define explicit remote queues any more.

SP2 LAN Sysplex Internet/WAN
© Copyright IBM Corp. 1999 7

• Only one cluster transmission queue is required to send messages to all
queue managers in the cluster, and this queue is created automatically.

• There is no “master” queue manager to manage or that can fail. Each
queue manager is still autonomous.

• Multiple instances of queue names are supported. So redundancy can be
built into the systems.

• Multiple instances of queues support load balancing, also called workload
management. Customizing is possible through workload management exit
routines.

• No manual cleanup or deletion of redundant definitions.

2.1 Why Clusters?

Figure 2 shows very big systems running on a very big computer. You could
take all of the applications you want to run with all their associated data and
put them on a very big processor. Unfortunately, such processors do not
exist, and, if they did exist the consequences of failure would be enormous.

Figure 2. A Very Large Processor - An Impractical Solution

horizontal

vertical
8 MQSeries Version 5.1 Administration and Programming Examples

Even if we could build large enough processors that never failed, we may still
not choose to use them. They would be very difficult to administer because
the risk of making an administrative error would be considerable. Also, we
would have to be very disciplined in the names we used.

Figure 2 gives a hint of this problem in that there are two striped queues, one
horizontal and the other vertical striped. The applications on the left both
intend to use a striped queue; However, one of them needs the horizontal and
the other the vertical striped queue. Unfortunately, they have both chosen the
name “striped”.

Clustering is one way to help us to deploy several real machines as part of an
application. In the configuration shown in Figure 3 several instances of the
queue have been deployed on various processors. We achieve the
processing power we need by using a number of smaller and less expensive
processors working on the subset of the messages that are sent.

Figure 3. Cluster Solution
Chapter 2. About Clusters 9

We achieve better availability because, if one of the smaller processors fails,
or the network to it fails, we are still able to use others that have not failed.

The MQSeries cluster support is designed so that the consequences of an
administrative error are confined to the machine that it is made on. MQSeries
also manages the messages so that they go to a working instance of the
queue as quickly as possible, without exposing the application programmers
and the administrators to the complexity of achieving this.

MQSeries also offers a solution to the naming problems. Users of the striped
queue in Figure 3 may use the specific striped queue that they know to be the
one they are really interested i, or you can construct the cluster so that a
particular application sees its own kind of striped queue only.

Figure 4. Goals of the Cluster Support

Now let us look at Figure 4. You see multiple queues, A and B, with a single
image. The vision of an MQSeries cluster is as the place where multiple
instances of a queue can exist. They come and go as an administrator
requires in order to satisfy changing availability and throughput requirements.
This has to be achieved completely dynamically and without placing the
administrator under a great burden to configure and control it. In addition, the
application programmer does not have to think about the multiple queues; he
just treats them as if he were writing to a single queue.

MQput B

A

A

A

B

10 MQSeries Version 5.1 Administration and Programming Examples

This is not to say that there is no burden on the programmer or administrator.
Enhanced levels of availability and exploitation of parallelism do require some
planning. The administrator or system designer must ensure that there is
enough redundancy in the configuration to meet their needs. The application
designer must ensure that messages are capable of being processed in
multiple places.

2.2 Cluster Concept

The concepts used for the MQSeries cluster support are very natural ones
that we come across frequently in everyday life.

Figure 5. Cluster Checkout

Think about a supermarket checkout as illustrated in Figure 5. When we want
our basket of goods processed we choose a checkout and get in the queue
for it. We may not always make the ideal choice, in that another checkout may
turn out to be working faster, but we do make a choice. If our initial choice
turns out to be badly wrong then we can always make another choice. This is
very similar to the way the MQSeries cluster support manages our messages.
It makes a choice on a number of possible destinations and if it turns out to
be a bad choice then it tries again.

In the above example, the application (customer) sees a single (checkout)
queue which is actually implemented as multiple (cashier) queues.

MQPUT
Chapter 2. About Clusters 11

Figure 6. Workload Partitioning

Take another ever day example, this time a type of workload partitioning as
shown in Figure 6. In a British post office, some of the counters offer full
service and some only specialized functions. We have to make a choice
based on the type of request we have, either a driving license application or
television license application. The type of request decides which counter we
must queue for.

We need three pieces of underlying technology to achieve clustering. These
are shown in Figure 7 on page 13.

1. A repository containing the location of queues and queue managers

2. A means of communicating between queue managers that does not
require prior definition, that is, automatic definition of dynamic channels

3. A way to choose where to send the messages, either to a specific queue
or to any queue with the same name owned by any queue manager in the
cluster

In summary, MQSeries cluster support provides automated definition of
channels based on a single command. It supports multiple instances of
queues so redundancy can be built into the system. There is no master queue
manager that can fail; each queue manager is autonomous.

New Driving
License
Please

Renew TV
License
Please
12 MQSeries Version 5.1 Administration and Programming Examples

Figure 7. Components of a Cluster

You can see in Figure 7 that there are only dynamic channels defined
between the queue managers for data transfer (message channels). There
are also permanent channels that are used by the queue managers to
exchange repository information. These are the cluster sender and cluster
receiver channels.

In normal distributed messaging, we send messages to a specific queue
owned by a specific queue manager. All messages destined for that queue
manager are placed in a transmission queue at the sender’s side. This
transmission queue has the same name as the destination queue manager.
The message channel agents move the messages across the network where
it is placed in the destination queue. The picture below shows the relationship
between the transmission (Xmit) queue and the target queue manager.

Figure 8. MQPUT to a Remote Queue

MQPut(ClusterQueue

,QMgr?);

Queue

Repository

Dynamic
Channel

Queue
Repository

Queue

Repository

Dynamic
Channel

Dynamic
Channel

Workload

Management
Exit

Workload

Management
Exit

Workload

Management
Exit

QmgrMQPUT
Xmit
Queue

Remote
Queue

Target
Queue
Chapter 2. About Clusters 13

Figure 9. MQPUT to a Cluster Queue

With clustering, you send a message to a queue with a specific name
somewhere in the cluster, here represented by a cloud. You specify the name
of the target queue, not the name of a remote queue. Remote queues don’t
exist in clusters. They are only useful when the queue manager
communicates with a queue manager that is not a member of the cluster. You
may also want to specify the queue manager, but very often it is left to
MQSeries to find out where the queue is (or the queues are) and where to
send the message to.

Figure 10 on page 15 illustrates how clustering works. The queue manager
finds out from the repository where the destination queue and the queue
manager are located. If the queue is local then all messages will be placed in
that local queue. Otherwise, it builds a transmission header and puts the
message in the transmission queue. Instead of one transmission queue for
each of the remote queue managers, in a cluster there is only one cluster
transmission queue that hold all messages destined for all remote cluster
queue managers.

The message channels between the sending and receiving queue managers
are automatically created.

Figure 10 on page 15 shows what happens when MQSeries executes an
MQOPEN, MQPUT and MQGET:

• If the queue is defined anywhere in the cluster the MQOPEN succeeds
and opens it.

Note: When both queue and queue manager are specified, the existence
of the queue is not checked. If the queue does not exist at that queue
manager, the message will be put in the dead-letter queue, if there is one.

• When an MQPUT is executed, it can go either to a local instance of the
queue or to a remote instance. MQSeries always puts the message in a
local queue if there is one.

MQPUT
Cluster
Xmit

Queue

Target
Queue
14 MQSeries Version 5.1 Administration and Programming Examples

Figure 10. How Clustering Works

• A cluster workload exit can choose which queue instance to put the
message to. By default, messages are distributed to the queue instances
round-robin.

Note: Workload balancing is determined by the open option.

- The option MQOO_BIND_NOT_FIXED causes the messages to be
distributed round-robin to all queues with the same name.

- If you specify MQOO_BIND_ON_OPEN then all messages sent
between the MQOPEN and the MQCLOSE are sent to the same
queue.This conforms to the way MQSeries operates in a non-cluster
mode.

• An MQGET can only be issued against the local instance of a queue.
Here, nothing has changed from previous releases.

Queue Manager

Application

MQOPEN

MQPUT

MQGET

Repository

SYSTEM.CLUSTER.TRANSMIT.QUEUE

Local.Queue

Communications

WLExit
Chapter 2. About Clusters 15

2.3 A Routing Example

Figure 11 shows an example of a cluster made from four servers connected
using a local area network. There are four queue managers, one on each
processor. Each queue manager hosts a variety of queues. Q3 for example is
hosted on QM1 and QM3.

Figure 11. A Routing Example - Configuration

Now let us look at Table 1 and analyze the four examples for putting
messages into Q3.

Table 1. \A Routing Example - Results

1. Example 1 shows what happens if an application running on QM2
executes an MQPUT to Q3 without specifying a destination queue
manager. Because Q3 exists on QM1 and QM3, the message could be
sent to either QM1 and QM3.

2. Example 2 shows that if the same application had chosen to specify QM1
explicitly as the destination, then this choice would be honored and the
message sent to QM1.

Q3 Q4 Q5

QM3

QM4

Q1 Q4

QM2

Q2 Q4

QM1

Q1 Q2 Q3 Q4

Example No QM Where Put Requested Queue Requested QM
Actual

Destination QM Status

1 QM2 Q3 QM1/QM3 OK

2 QM2 Q3 QM1 QM1 OK

3 QM2 Q3 QM4 Dead Letter
Queue Error

4 QM1 Q3 QM1/QM3 OK
16 MQSeries Version 5.1 Administration and Programming Examples

3. In example 3, QM4 was chosen explicitly as the destination queue
manager. When the message arrives at QM4 it is put in the dead-letter
queue because there is no instance of Q3 on QM4.

4. In example 4, an application running on QM1 requests Q3 without
specifying a destination queue manager. Here either QM1 or QM3 could
be the destination. In fact, if the default routing is used unaltered then
QM1 will always be chosen because it hosts the local instance of the
queue.

The queue manager identifies a queue as being in the cluster when the
queue is opened. This is done by searching the repository. If the queue exists
somewhere in the cluster then the application can open it.

The queue manager puts all messages for all queues in the cluster on a
single transmission queue called SYSTEM.CLUSTER.TRANSMIT.QUEUE.

2.4 How Clusters Work

Two new channel types have been introduced for clusters:

• Cluster Sender Channel (CLUSSDR)

• Cluster Receiver Channel (CLUSRCVR)

There are also two types of repositories:

• A full repository holds information about all queues and queue managers
in the cluster. Usually, two queue managers hold full repositories. Both
queue managers exchange information so that both repositories contain
the same data.

• All other queue managers have a partial repository, which contains only
information the particular queue manager is interested in.

Data is kept in the repository for a specified time (90 days) or until it is
refreshed by an operator command.

If the application explicitly names a destination, this is used without
checking that the queue exists at that destination.

Watch out!
Chapter 2. About Clusters 17

Figure 12 shows a cluster that consists of three queue managers. Two of
them, QM2 and QM3, hold a full repository while QM1 holds a partial
repository.

Figure 12. Cluster Definitions

To set up a cluster you first need to decide which two queue managers are
going to keep a full copy of all the definitions in the cluster. Here we choose
QM2 and QM3 to hold the full repositories; QM1 just holds the subset of the
repository that it needs, a partial repository.

QM2 and QM3 are not master repositories in any sense; they do not control
the cluster, nor does the cluster stop functioning if both are unavailable.

Each queue manager must have one cluster sender channel (CLUSSDR)
defined to give it the location of another repository. In the case of the full
repository this must point to the other full repository. CLUSSDR channels are
represented by the arrows pointing away from the queue manager.

Each queue manager must also have a cluster receiver channel
(CLUSRCVR) defined. Via this channel it receives messages from the other
members of the cluster. And it is also used to advertise the queue manager to
other queue managers (via the full repositories) so that they know how to
connect to it. CLUSRCVR channels are represented by the arrows pointing to
the queue managers.

Q M 3

Q M 2

F u ll re p o sito ry
Q M 1

F ull rep o s ito ry
18 MQSeries Version 5.1 Administration and Programming Examples

A CLUSRCVR channel can talk only to a CLUSSDR channel. It cannot
connect to a normal sender channel. Also, an MQ client cannot use it.

Note: The full repository queue manager QM2 must be running to distribute
information about objects in the cluster that belong to a queue manager
attached to it. For example, if you create a new queue on QM1, and QM2 is
down, then QM3 and any other queue manager in the cluster will not become
aware of the queue until QM2 is restarted again. You may, however, define
cluster channels between QM1 and the other full repository, QM3.

Figure 13 shows a typical cluster setup from the point of view of the queue
manager on the left. It has a single CLUSRCVR channel defined as well as a
single CLUSSDR channel to the full repository queue manager on the top. All
other definitions you see are created automatically.

Figure 13. Typical Cluster Definition

Dynamic
Channels

Queue
Repository

Queue
Repository

Workload

Management
Exit

MQPUT(ClusterQ,QMgr?);

Dynamic
Channels

Dynamic
Channels

Queue
Repository

Queue
Repository

Queue
Repository

Static
Sender
Channel

Workload

Mgmt ExitDynamic
Channels

Full Repository

Partial Repository

Queue
Repository

Workload

Mgmt Exit

Workload

Mgmt Exit

Workload

Mgmt Exit

Workload

Mgmt Exit
Chapter 2. About Clusters 19

2.4.1 Example with Two Queue Managers
Very little definition is required to use the MQSeries cluster support. In Figure
14 on page 20 we show an example using two queue managers connected
using a local area network.

Figure 14. Example of a Cluster with Two Queue Managers

There are very few definitions, yet we have a high degree of autonomy at
each queue manager and no single point of failure for either the configuration
or the messages to queue Q2. Even the queues that do not have multiple
instances have only been defined once.

Figure 15. RUNMQSC Script File for QM1 in a Cluster

Figure 16. RUNMQSC Script File for QM2 in a Cluster

QM1 QM2

TO.QM2

TO.QM1

CLUSSDR CLUSRCVR

CLUSRCVR CLUSSDR

MACH1 MACH2

Q2

ALTER QMGR REPOS(CLUS_1)
DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +

CONNAME(MACH1.IBM.COM) CLUSTER(CLUS_1)
DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +

CONNAME(MACH2.IBM.COM) CLUSTER(CLUS_1)

ALTER QMGR REPOS(CLUS_1)
DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +

CONNAME(MACH2.IBM.COM) CLUSTER(CLUS_1)
DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +

CONNAME(MACH1.IBM.COM) CLUSTER(CLUS_1)
DEFINE QLOCAL(Q2) CLUSTER(CLUS_1)
20 MQSeries Version 5.1 Administration and Programming Examples

Now let us compare the definitions for the cluster above with the definitions
we would have to make without clustering.

Figure 17. RUNMQSC Script File for QM1 without Clustering

Figure 18. RUNMQSC Script File for QM2 without Clustering

2.4.2 Example with Three Queue Managers

This example shows the definitions for a cluster consisting of three queue
managers and five cluster queues. QM2 and QM3 hold a full repository.

DEFINE QLOCAL(QM2) USAGE(XMITQ)
DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(QM2)
DEFINE CHANNEL(TO.QM1) CHLTYPE(RCVR)
DEFINE CHANNEL(TO.QM2) CHLTYPE(SDR) XMITQ(QM2) +

TRPTYPE(TCP) CONNAME(MACH2.IBM.COM)

DEFINE QLOCAL(QM1) USAGE(XMITQ)
DEFINE CHANNEL(TO.QM2) CHLTYPE(RCVR)
DEFINE CHANNEL(TO.QM1) CHLTYPE(SDR) XMITQ(QM1) +

TRPTYPE(TCP) CONNAME(MACH1.IBM.COM)
DEFINE QLOCAL(Q2)

Q2 Q4

QM3QM2

QM1

LAN

Q3 Q4 Q5
Chapter 2. About Clusters 21

Figure 19. Definitions for QM1

Figure 20. Definitions for QM2 (Repository)

Figure 21. Definitions for QM3 (Repository)

Compare the above definitions with the ones on the next page. You can see
that clusters make life easier.

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME(MACH1.IBM.COM) CLUSTER(CLUS_1)

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME(MACH2.IBM.COM) CLUSTER(CLUS_1)

ALTER QMGR REPOS(CLUS_1)

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME(MACH2.IBM.COM) CLUSTER(CLUS_1)

DEFINE CHANNEL(TO.QM3) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME(MACH3.IBM.COM) CLUSTER(CLUS_1)

DEFINE QLOCAL(Q2) CLUSTER(CLUS_1)
DEFINE QLOCAL(Q4) CLUSTER(CLUS_1)

ALTER QMGR REPOS(CLUS_1)

DEFINE CHANNEL(TO.QM3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME(MACH3.IBM.COM) CLUSTER(CLUS_1)

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME(MACH23.IBM.COM) CLUSTER(CLUS_1)

DEFINE QLOCAL(Q3) CLUSTER(CLUS_1)
DEFINE QLOCAL(Q4) CLUSTER(CLUS_1)
DEFIME QLOCAL(Q5) CLUSTER(CLUS_1)
22 MQSeries Version 5.1 Administration and Programming Examples

Figure 22. Definitions for QM1 without Clustering

Figure 23. Definitions for QM2 without Clustering

Figure 24. Definitions for QM3 without Clustering

DEFINE QLOCAL(QM2) USAGE(XMITQ)
DEFINE QLOCAL(QM3) USAGE(XMITQ)
DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(QM2)
DEFINE QREMOTE(Q3) RNAME(Q3) RQMNAME(QM3)
DEFINE QREMOTE(Q4) RNAME(Q4) RQMNAME(QM3)
DEFINE QREMOTE(Q5) RNAME(Q5) RQMNAME(QM3)
DEFINE CHANNEL(TO.QM1) CHLTYPE(RCVR)
DEFINE CHANNEL(TO.QM2) CHLTYPE(SDR) XMITQ(QM2) +

TRPTYPE(TCP) CONNAME(MACH2.IBM.COM)
DEFINE CHANNEL(TO.QM3) CHLTYPE(SDR) XMITQ(QM3) +

TRPTYPE(TCP) CONNAME(MACH3.IBM.COM)

DEFINE QLOCAL(QM1) USAGE(XMITQ)
DEFINE QLOCAL(QM3) USAGE(XMITQ)
DEFINE QREMOTE(Q3) RNAME(Q3) RQMNAME(QM3)
DEFINE CHANNEL(TO.QM2) CHLTYPE(RCVR)
DEFINE CHANNEL(TO.QM1) CHLTYPE(SDR) XMITQ(QM1) +

TRPTYPE(TCP) CONNAME(MACH1.IBM.COM)
DEFINE CHANNEL(TO.QM3) CHLTYPE(SDR) XMITQ(QM3) +

TRPTYPE(TCP) CONNAME(MACH3.IBM.COM)
DEFINE QLOCAL(Q2)
DEFINE QLOCAL(Q4)

DEFINE QLOCAL(QM1) USAGE(XMITQ)
DEFINE QLOCAL(QM3) USAGE(XMITQ)
DEFINE QREMOTE(Q2) RNAME(Q2) RQMNAME(QM2)
DEFINE CHANNEL(TO.QM3) CHLTYPE(RCVR)
DEFINE CHANNEL(TO.QM1) CHLTYPE(SDR) XMITQ(QM1) +

TRPTYPE(TCP) CONNAME(MACH1.IBM.COM)
DEFINE CHANNEL(TO.QM2) CHLTYPE(SDR) XMITQ(QM2) +

TRPTYPE(TCP) CONNAME(MACH2.IBM.COM)
DEFINE QLOCAL(Q3)
DEFINE QLOCAL(Q4)
DEFINE QLOCAL(Q5)
Chapter 2. About Clusters 23

Doing this the old way we see that fewer definitions were required in the
clustering case. It is also no longer possible to have multiple instances of the
queues. The number of definitions is reduced and the number of matching
fields is also reduced. The statistics are shown in Table 2.

Table 2. Comparison of Definitions with and without Clustering

For clustering, the connection name and the channel name in the CLUSSDR
channel must match the repository CLUSRCVR.

For nonclustering, the transmit queue name must match an actual transmit
queue, as well as matching connection name and channel name. QREMOTE
names must match QLOCAL names, and transmit queue names should
match queue manager names.

2.4.3 Example with Four Queue Managers in Two Networks
Figure 25 on page 25 shows four queue managers. QM4 runs on MVS/ESA
and holds a full repository. The other full repository is maintained by QM2,
which runs on a distributed platform, such as Windows NT.

Notice that QM2 has two cluster receiver channels defined, one (CS2) using
SNA to connect to QM4 and another (CT2) using TCP/IP. The cluster sender
channel points to QM4 on the mainframe and uses SNA.

Clustering Non Clustering
CHANNELS 6 9

QLOCAL 5 5
QREMOTE 0 6

XMIT QUEUE 0 6

Clustering Non Clustering
CHANNELS 6 18

QLOCAL 0 0
QREMOTE 0 8

XMIT QUEUE 0 6

Number of definitions

Number of matching fields
24 MQSeries Version 5.1 Administration and Programming Examples

Figure 25. Multiple Networks

Figure 26. Two Networks - Script File for QM2

Q3 Q4 Q5
QM3

QM4
Q1 Q3 Q4

QM2
Q2 Q4

QM1
Q1 Q2 Q3 Q4

LAN

SNA

ALTER QMGR REPOS(DEMO)
DEFINE CHANNEL(CS2) CHLTYPE(CLUSRCVR) TRPTYPE(SNA) +

NETPRTY(1) CONNAME(SNAQM2) CLUSTER(DEMO)
DEFINE CHANNEL(CT2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +

NETPRTY(2) CONNAME(MACH2.IBM.COM(1414)) CLUSTER(DEMO)
DEFINE CHANNEL(CS4) CHLTYPE(CLUSSDR) TRPTYPE(SNA) +

CONNAME(SNAQM4) CLUSTER(DEMO)
DEFINE QLOCAL(Q2) CLUSTER(DEMO)
DEFINE QLOCAL(Q4) CLUSTER(DEMO)
Chapter 2. About Clusters 25

Figure 27. Two Networks - Script File for QM3

Figure 28. Two Networks - Script File for QM4

2.5 RUNMQSC Commands for Clusters

In this section, we briefly describe the RUNMQSC commands used with
clusters. They are described, in detail, in the MQSeries Command Reference,
SC33-1369.

In this case all three queue managers run in the same machine. Therefore,
we can use the TCP/IP loopback address 127.0.0.1 as CONNAME. We also
need three listeners listening on different ports. First let us have a closer look
at the commands we already know, the ones we used to define the clusters in
the previous examples.

DEFINE CHANNEL(CS3) CHLTYPE(CLUSRCVR) TRPTYPE(SNA) NETPRTY(1)
CONNAME(SNAQM3) CLUSTER(DEMO)

DEFINE CHANNEL(CT3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) NETPRTY(2)
CONNAME(MACH3.IBM.COM) CLUSTER(DEMO)

DEFINE CHANNEL(CS4) CHLTYPE(CLUSSDR) TRPTYPE(SNA)
CONNAME(SNAQM4) CLUSTER(DEMO)

DEFINE CHANNEL(CT2) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME(MACH2.IBM.COM) CLUSTER(DEMO)

DEFINE QLOCAL(Q3) CLUSTER(DEMO)
DEFINE QLOCAL(Q4) CLUSTER(DEMO)
DEFINE QLOCAL(Q5) CLUSTER(DEMO)

ALTER QMGR REPOS(DEMO)
DEFINE CHANNEL(CS4) CHLTYPE(CLUSRCVR) TRPTYPE(SNA) +

CONNAME(SNAQM4) CLUSTER(DEMO)
DEFINE CHANNEL(CS2) CHLTYPE(CLUSSDR) TRPTYPE(SNA) +

CONMAME(SNAQM2) CLUSTER(DEMO)
DEFINE QLOCAL(Q1) CLUSTER(DEMO)
DEFINE QLOCAL(Q3) CLUSTER(DEMO)
DEFINE QLOCAL(Q4) CLUSTER(DEMO)
26 MQSeries Version 5.1 Administration and Programming Examples

Figure 29. First of Three Cluster Queue Managers in One Machine

QM1 does not keep a full repository. We specify two channels:

• Over the CLUSRCVR channel QM1 advertises itself to the cluster; it is
also used to receive information about queues within the cluster.

• Over the CLUSSDR channel QM1 sends information about cluster objects
it owns to its repository queue manager, which is QM2.

QM1 is associated with port 1414 (which is the default port) and QM2 listens
to port 1515.

Figure 30. Second of Three Cluster Queue Managers in One Machine

QM2 is a server in the cluster CLUS_1 and it also maintains a copy of the
repository. The commands cause the following:

• ALTER QMGR REPOS(CLUS_1)

This command declares that the queue manager is to own and maintain a
copy of the repository for cluster CLUS_1.

• DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSRCVR) ...

This attaches the queue manager to the cluster.

• DEFINE CHANNEL(TO,QM3) CHLTYPE(CLUSSDR) ...

This instructs the queue manager to send any updates for the repository

DEFINE CHANNEL(TO.QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1414)') CLUSTER(CLUS_1) REPLACE

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1415)') CLUSTER(CLUS_1) REPLACE

ALTER QMGR REPOS(CLUS_1)

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1415)') CLUSTER(CLUS_1) REPLACE

DEFINE CHANNEL(TO.QM3) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1416)') CLUSTER(CLUS_1) REPLACE

DEFINE QLOCAL(Q2) CLUSTER(CLUS_1) REPLACE
DEFINE QLOCAL(Q4) CLUSTER(CLUS_1) REPLACE
Chapter 2. About Clusters 27

down this channel to QM3 where another copy of the repository is
maintained.

• DEFINE QLOCAL(Q2) CLUSTER(CLUS_1)

This defines a local queue. The queue manager is instructed to advertise
the existence of an instance of Q2 on this queue manager to the rest of
the cluster.

QM2 communicates with QM3, the other full repository queue manager in the
cluster. They use port 1415 and 1416, respectively.

Figure 31. Third of Three Cluster Queue Managers in One Machine

QM3, the other full repository queue manager has cluster channels defined to
communicate with QM2. Furthermore, it hosts three queues that are known
throughout the cluster.

We typed the three sets of definitions in three different script files so that they
can be used as input for RUNMQSC.To get communication going between the
three queue managers, you first have to create the queue managers and start
them:

crtmqm QM1
crtmqm QM2
crtmqm QM3
strmqm QM1
strmqm QM2
strmqm QM3

Next you have to start the three listeners:

start runmqlsr -t tcp -p 1414 -m QM1
start runmqlsr -t tcp -p 1415 -m QM2

ALTER QMGR REPOS(CLUS_1)

DEFINE CHANNEL(TO.QM3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1416)') CLUSTER(CLUS_1) REPLACE

DEFINE CHANNEL(TO.QM2) CHLTYPE(CLUSSDR) TRPTYPE(TCP) +
CONNAME('127.0.0.1(1415)') CLUSTER(CLUS_1) REPLACE

DEFINE QLOCAL(Q3) CLUSTER(CLUS_1) REPLACE
DEFINE QLOCAL(Q4) CLUSTER(CLUS_1) REPLACE
DEFINE QLOCAL(Q5) CLUSTER(CLUS_1) REPLACE
28 MQSeries Version 5.1 Administration and Programming Examples

start runmqlsr -t tcp -p 1416 -m QM3

This brings up three listener windows. After a while you will see that the
channel programs have started. The following message will appear in each
window:

04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
09/09/99 15:05:58 Channel program started.
09/09/99 15:07:06 Channel program started.

Now the repository queue managers QM2 and QM3 exchanged information
about the queue in the cluster. QM1 will build a partial repository when it
requests information about one of the queues, that is, when it tries to open
one.

Let us use RUNMQSC on QM2 and display the queues we defined.
Remember, all queues start with a Q.

Figure 32. Display Queues

• The first command lists all queue names starting with Q. This is no
different from previous versions of MQSeries.

• The second command with the parameter cluster displays the same
queues and the name of the cluster they belong to, if applicable.

In the examples above, we see only local queues or the local instances of the
queues.

C:\>runmqsc QM2
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998.
Starting MQSeries Commands.

dis ql(Q*)
1 : dis ql(Q*)

AMQ8409: Display Queue details.
QUEUE(Q2)

AMQ8409: Display Queue details.
QUEUE(Q4)

dis ql(Q*) cluster
2 : dis ql(Q*) cluster

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q2)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q4)
Chapter 2. About Clusters 29

Figure 33. Display Queues with Cluster information

The above screen shows all five queues and tells us which queue manager
hosts which queues.

• In the first two lines we see the queues owned by QM2, Q2 and Q4. The
additional lines are caused by the clusinfo parameter.

• There is one instance of Q2 at QMGR2.

• There are is instance each of Q3 and Q5 at QM3.

• There are two instances of Q4, one at QM2 and the other at QM3.

• QM1 does not own any cluster queues.

With the next command, display CLUSQMGR (Figure 35), we can display cluster
information about all queue managers in the cluster. It displays the routes to
queue managers in the cluster to which a queue manager is attached.

In the following example we display the information as seen from QM2.

C:\>runmqsc QM2
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

dis ql(Q*) cluster clusinfo clusqmgr
1 : dis ql(Q*) cluster clusinfo clusqmgr

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q2)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q4)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q2)
CLUSQMGR(QM2)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q3)
CLUSQMGR(QM3)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q4)
CLUSQMGR(QM3)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q4)
CLUSQMGR(QM2)

AMQ8409: Display Queue details.
CLUSTER(CLUS_1) QUEUE(Q5)
CLUSQMGR(QM3)
30 MQSeries Version 5.1 Administration and Programming Examples

Figure 34. Display Cluster Information (1)

The above screen shows the three queue managers in CLUS_1. You can see
the connection name (the TCP/IP loop back address) and the port. The
channels between the queue managers are running.

Figure 35. Display Cluster Information (2)

Figure 35 shows two additional pieces of information:

C:\>runmqsc QM2
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

dis clusqmgr(*) conname status
1 : dis clusqmgr(*) conname status

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM1) CLUSTER(CLUS_1)
CHANNEL(TO.QM1) CONNAME(127.0.0.1(1414))
STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM2) CLUSTER(CLUS_1)
CHANNEL(TO.QM2) CONNAME(127.0.0.1(1415))

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM3) CLUSTER(CLUS_1)
CHANNEL(TO.QM3) CONNAME(127.0.0.1(1416))
STATUS(RUNNING)

C:\>runmqsc QM2
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

dis clusqmgr(*) conname status qmtype deftype
1 : dis clusqmgr(*) conname status qmtype deftype

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM1) CLUSTER(CLUS_1)
CHANNEL(TO.QM1) CONNAME(127.0.0.1(1414))
DEFTYPE(CLUSSDRA) QMTYPE(NORMAL)
STATUS(RUNNING)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM2) CLUSTER(CLUS_1)
CHANNEL(TO.QM2) CONNAME(127.0.0.1(1415))
DEFTYPE(CLUSRCVR) QMTYPE(REPOS)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM3) CLUSTER(CLUS_1)
CHANNEL(TO.QM3) CONNAME(127.0.0.1(1416))
DEFTYPE(CLUSSDRB) QMTYPE(REPOS)
STATUS(RUNNING)
Chapter 2. About Clusters 31

• QMTYPE displays whether it is a repository queue manager (REPOS) or a
not (NORMAL).

• DEFTYPE shows how the cluster channels were defined:

- CLUSSDRA is specified for the sender channel to QM1. This channel has
been defined automatically.

- CLUSRCVR is specified for the receiver channel connected to QM3, to the
other repository queue manager. This channel has been defined
explicitly.

- CLUSSDRB is specified for the sender channel to QM3, which hosts the
other repository. We defined an explicit definition for it. However, it is
also automatically defined.

Examples of how to build clusters using RUNMQSC and the new GUIs for
Windows NT are given in Chapter 4, “Creating a Cluster with the MQExplorer”
on page 55 and Chapter 5, “Creating a Cluster with Scripts” on page 95.
32 MQSeries Version 5.1 Administration and Programming Examples

Chapter 3. MQSeries for Windows NT Version 5.1

In this chapter we describe briefly the new features of Version 5.1 and the
changes from Version 5.0. The new version is closely integrated with
Windows NT Version 4. The most important features are the two GUIs for
administration, the MQSeries Explorer and MQSeries Services. MQSeries
exploits the Microsoft Management Console (MMC) for that. Detailed
information on how to use them is provided in Chapter 4, “Creating a Cluster
with the MQExplorer” on page 55.

Here are some of the important features:

• The code path length for non-persistent messages has been optimized
and can save up to 20%.

• There can also be a 10% reduction in CPU time when the improved
Microsoft V5 compiler is used.

• The scope of the MQCONNX connection handle is expanded to allow it to
be shared by multiple NT threads.

• The installation has been simplified. It can now actually be called “easy”. A
default configuration can get you going quickly.

• Version 5.1 includes the MQSeries Information Center, which provides
good help information and lets you read MQSeries literature online.

• A Web browser interface for system administration lets you administer
MQSeries objects on the local and on remote servers.

• MQSeries Lotus Script Extensions (LSX) include MQSeries calls in Lotus
Scripts running on Windows NT. You can connect to Lotus Notes and
Domino from NT using MQSeries messaging.

• There are also interfaces to MQSeries services from ActiveX and Visual
Basic.

• In addition to Windows V3.1 and Windows 95 clients, there is now a
Windows NT client.

• All valid Windows NT user IDs are now allowed. A user ID can now be
longer than 12 characters.

• The Windows NT Performance Monitor can be used to gather queue
statistics.
© Copyright IBM Corp. 1999 33

3.1 Installation

Before you can install MQSeries for Windows NT Version 5.1 you have to
install some prerequisite software. For the examples developed for this book
we installed:

1. Microsoft Service Pack 3 for Windows NY Version 4
(We used Service Pack 4)

2. Microsoft Internet Explorer 4.0.1 with Service Pack 1
(We used Version 5)

3. Microsoft HTML Help 1.2 (hhupd.exe)

4. Microsoft Management Console (MMC) 1.1

5. Active Directory Service Interface (ADSI) V2.0

6. Adobe Acrobat V3.02

The last four items are on the MQSeries installation CD. The others you may
download from the Web or you may obtain a CD.

The following dependencies should be taken into consideration:

1. The Web Administration Server needs the MQSeries Server.

2. The Internet Gateway needs the Windows NT Client.

3. The documentation in other languages need the documentation in the
installation language.

MQSeries installs by default into the directory \Program Files\MQSeries. We
changed it to \MQM as it was in previous versions. We recommend that you
install the programs and data in the same directory. This may avoid problems
with initializing the MMC.

• When you install the Internet Explorer you must select the Microsoft
Virtual Machine or the GUIs will not work. You will get a message saying
that the MMC cannot be initialized.

• If you want to use Web administration, you must select Custom install
and select Web administration. This feature is not installed by default.

• You may want to increase the virtual memory to over 100 MB. Select
Start -> Settings -> Control Panel -> System. Then click the
Performance tab and change the virtual memory.

Important
34 MQSeries Version 5.1 Administration and Programming Examples

Figure 36 shows the MQSeries menu. Later we will discuss the items in more
detail. But first let us mention that there are no INI files any more. Information
that used to be in the INI files is now in the registry. All stanzas become keys.

Figure 36. MQSeries Menu

Figure 37. MQSeries Keys in Registry

HKEY_LOCAL_MACHINE

SOFTWARE

IBM

MQSeries

CurrentVersion

Configuration

QueueManager

QueueManagerName

MQS.INI

QM.INI
Chapter 3. MQSeries for Windows NT Version 5.1 35

Figure 38. Registry Replacing MQS.INI File

Figure 38 shows the MQSeries configuration in the registry. Here the default
queue manager is selected.

Figure 39 on page 37 shows registry keys for the queue manager, formerly
stanzas in the QMgr.INI files. Here the logging-related values are displayed.

All values are stored as type REG_SZ. You should not use REGEDIT to modify
values in the registry. Use the MQServices Snap-in instead. If you must
modify values by hand, use REGEDT32.

If a key has no values or subkeys, delete it. There should be no empty keys.

Figure 40 on page 37 shows the MQServices window. Through this window
you should make your updates to the registry. The figure shows the tab with
log file information.
36 MQSeries Version 5.1 Administration and Programming Examples

Figure 39. Queue Manager Keys in the Registry

Figure 40. MQ Services Snap-In
Chapter 3. MQSeries for Windows NT Version 5.1 37

3.2 MQSeries First Steps

For a short period of time in 1997, a product with this name could be
downloaded from the MQSeries Web site on the Internet. We described this
product in the redbook Connecting the Enterprise to the Internet with
MQSeries and VisualAge for Java, SG24-2144. The new product available
with MQSeries Version 5 has much improved. You can use it to get started
with MQSeries and also use it as a tool to learn the MQSeries APIs.

When you start MQSeries First Steps you can choose from a list of options:

1. Default Configuration

This features creates a queue manager and configures it for connecting
with other computers on the same TCP/IP domain.

Note: This option can also be invoked from the installation menu.

2. Quick Tour

This feature demonstrates the basic concepts and functions of MQSeries.
It provides an introduction to the MQSeries product and how to work with
the MQSeries components, such as queue managers, cluster, queues,
channels and listeners.

3. Postcard

You can use this program to try out messaging and communicate between
different computers. This application uses the default configuration.

4. MQSeries Explorer

With this new GUI you can view and administer your MQSeries network. It
is an alternative to RUNMQSC.

5. API Exerciser

With this tool you can explore the functions of messaging ad queueing. A
set of GUIs lets you execute the MQSeries APIs without writing one line of
code.

6. Information Center

This gives you quick access to help information, reference material, and
Web-based books and home pages. You can read the MQSeries manuals
online.

In the following sections we discuss the above features in more detail.
38 MQSeries Version 5.1 Administration and Programming Examples

3.3 Default Configuration

The default configuration is an application that creates a number of MQSeries
objects to allow you to make use of the clustering abilities of Version 5.1
without having to set up the appropriate queues and channels.

The default configuration application can be invoked:

1. During the installation of Version 5.1

2. From MQSeries First Steps

3. From the Postcard application

The object names are based on the fully qualified TCP/IP machine name, for
example, wtr05176.itso.ral.ibm.com. All machines must belong to the same
TCP/IP domain. During the configuration process you have to specify a queue
manager that will hold the repository.

You cannot create the default configuration under three circumstances:

• When DHCP addresses are used. Clusters cannot use the Dynamic Host
Configuration Protocol.

• When queue managers already exist.

• When the DNS (Domain Name Server) is not set up.

The default configuration creates the following objects:

• Cluster

• Default queue manager

• Local queues with the names “default” and “postcard”

• Server connection channel

• Cluster sender channel

• Generic receiver channel

• Remote administration server connection channel with the name
SYSTEM.ADMIN.SVRCONN.

• Listener on port 1414

• Channel initiator using the SYSTEM.CHANNEL.INITQ.

Some objects are named based on the domain name, the full local machine
name, or the repository name. Queue names can be 48 characters long,
channel names up to 20. Longer names will be truncated. If a truncated name
Chapter 3. MQSeries for Windows NT Version 5.1 39

ends with a dot, this is also removed. Table 3 shows an example using the
following names:

• Domain name is raleigh.ibm.com
• Local machine is dieter.raleigh.ibm.com
• Repository is in tony.raleigh.ibm.com

Table 3. Names in Default Configuration

Follow these steps to create the default configuration:

1. Click Start ->IBM MQSeries -> MQSeries First Steps -> Default
Configuration. This displays the GUI shown in Figure 41 on page 41.

2. Click Set up Default Configuration on the bottom left of the window.

3. Accept the defaults by clicking Next.

4. Mark the radio button to make the queue manager the repository queue
manager.The setup may take several minutes.

5. Click Close when finished.

Cluster CL_domain_name
CL_raleigh.ibm.com

Queue manager QM_machine_name
QM_dieter.raleigh.ibm.com

Server connection channel S_machine name
S_dieter.raleigh.ibm.com

Cluster sender channel TO_repository_name
TO_tony.raleigh.ibm.com

Generic receiver channel TO_machine_name
TO_dieter.raleigh.ibm.com
40 MQSeries Version 5.1 Administration and Programming Examples

Figure 41. Creating the Default Configuration

Executing the RUNMQSC command dis ql(*) cluster clusqmgr clusinfowe see
that the following queues are created:

CLUSTER(CL_itso.ral.ibm.com) QUEUE(clq_default_wtr05176)
CLUSTER() QUEUE(default)
CLUSTER() QUEUE(postcard)
CLUSTER(CL_itso.ral.ibm.com) QUEUE(clq_default_wtr05176)

CLUSQMGR(QM_wtr05176.itso.ral.ibm.com)

Figure 42 on page 42 shows the channels. We used the MQSeries Explorer
to display them.
Chapter 3. MQSeries for Windows NT Version 5.1 41

Figure 42. Channels Defined by Default Configuration

3.4 MQSeries Postcard

This is a simple MQSeries application (amqpcard.exe) that can be used to
verify the installation using the default configuration. It lets you send
electronic postcards (see Figure 43 on page 43) to another instance of the
program. The other instance can run on the same machine running under the
same queue manager or on another machine in the same cluster. It is started
from MQSeries First Steps.

If you want to run the Postcard application on your PC follow these steps:

1. Click Start -> MQSeries First Steps -> Postcard. The default
configuration must exist and the queue manager must be running.

2. In the subsequent window enter a nickname, such as otto, and click Enter.
This creates the first instance.

3. To create the second instance, start Postcard again and enter another
nickname, such as hugo.
42 MQSeries Version 5.1 Administration and Programming Examples

Figure 43. MQSeries Postcard

You will see two postcard images as shown in Figure 44 on page 44. When
you click on the bottom right of the postcard you will see the other side.
This is shown in Figure 43. If you have the right screen resolution the
picture will even be animated.

4. Enter the nickname of the receiver (here hugo), type some text in the
message field and click Send.

The program will fill in the name of the computer, display the message in
the bottom of the window and send it to the other instance where it is also
displayed on the bottom of the window.

5. To send a message back, type some text in the message area, click Reply
to fill in the nickname of the receiver and then click Send to send the
postcard.

You will see the reply message in both windows as you can see in Figure
45 on page 44.

6. You can double-click an entry in the list of sent and received postcards to
view the message text.
Chapter 3. MQSeries for Windows NT Version 5.1 43

Figure 44. Sending a Postcard

Figure 45. Receiving a Postcard
44 MQSeries Version 5.1 Administration and Programming Examples

3.5 MQSeries Explorer

This Windows NT graphical user interface is concerned with MQSeries
objects, while the other new GUI, MQSeries Services, is concerned with
MQSeries processes.

The MQSeries Explorer obsoletes the use of control commands and RUNMQSC

for creation and operation of multiple local and remote queue managers. It
provides a convenient environment for experimentation and development.
The product even includes a message browser. You can use the MQSeries
Explorer to manually start and stop queue managers and channels. However,
the product operates in interactive mode only; you cannot use any scripts.

Figure 46 shows the default configuration in the MQSeries Explorer window.
You see the queue manager, the cluster, and what objects you can view.

Figure 46. MQSeries Explorer

View of the default configuration
Chapter 3. MQSeries for Windows NT Version 5.1 45

Figure 47. MQSeries Explorer - Multiple Queue Managers

Figure 48. MQSeries Explorer - Cluster Queue Managers

The MQSeries Explorer uses only standard features of the MQI to obtain the
objects it displays. Connections to other queue managers are running
simultaneously. The connections are established when the tree in the
windows is expanded for the first time. An explicit Connect option is available
for subsequent use. The Explorer uses TCP/IP only and relies on the DNS
(Domain Name System) server.
46 MQSeries Version 5.1 Administration and Programming Examples

Figure 49. MQSeries Explorer - Cluster Queues

Even though a cluster is not an MQSeries object, it appears in the Explorer
window as such. The Explorer presents information from many sources, that
is, queue managers together. It sends PCF commands to command servers
to obtain the information.

Figure 47 on page 46 shows that there are five queue managers running.
Figure 48 on page 46 shows which queue managers are known to QM_5. It
knows itself, of course, and two full repository queue managers. QM_2 and
QM_4 are not in the list because no messages have been sent to them or
received from them, and, therefore, are not in its partial repository. Figure 49
shows that QM_5 knows of three queue instances, all with the name CLQ_1.
They are hosted by three different queue managers.

We will explain the MQSeries Explorer in more detail in the next chapter when
we describe how to create a cluster.

3.6 MQSeries Services

Like the MQSeries Explorer, MQSeries Services is a snap-in to the Microsoft
Management Console (MMC). MQSeries Services is concerned with
MQSeries processes. For example, you can use MQSeries Services to define
what processes to start automatically at boot time, and whether a process
should restart after it has failed. Notice that the command SCMMQM does not
exist any longer. This program works in interactive mode only.
Chapter 3. MQSeries for Windows NT Version 5.1 47

Figure 50. MQSeries Services

Figure 50 shows the MQSeries Services window showing the processes for
the default configuration. You see that the queue manager is running and so
are the command server, channel initiator and listener. You also see that the
window includes an alert monitor, trace, and Web Administration.

From this window, you can do the following:

• Create, delete, start and stop processes

• Display and change properties (for example, to update the registry)

• Define recovery procedures

MQSeries Services works with the following objects:

• Queue managers
• Listeners
• Trigger monitors
• Channel initiators
• Web administration
• Command Server
• Alert Monitor
• Trace
48 MQSeries Version 5.1 Administration and Programming Examples

3.7 MQSeries API Exerciser

This feature has been developed to provide novice MQSeries programmers
with a basic understanding of how the 13 API calls work. The API exerciser
product is NLS compliant and has two modes, basic and advanced. The
MQINQ and MQSet APIs, for example, can only be executed in advanced
mode. This mode also allows you also to test all API parameters.

This GUI is user friendly and intuitive; it incorporates a full HTML help as well
as intelligible completion and return code interpretation.

This features requires that the command server is running. It supports
clusters, but does not support segmented messages. Also, clients are not
supported.

Figure 51 shows one of the GUIs. You can use it to connect and disconnect to
a queue manager and to select more APIs by clicking on the tabs.

Figure 51. API Exerciser

APIs
MQCONN
MQCONNX
MQDISC

MQOPEN
MQCLOSE

MQPUT
MQPUT1
MQGET

MQINQ
MQSET

MQBEGIN
MQCMIT
MQBACK

Brings up
Information Center

Only in
advanced mode

More parameters
Chapter 3. MQSeries for Windows NT Version 5.1 49

Figure 51 on page 49 lists the 13 APIs. To work with MQINQ and MQSET you
have to check Advanced mode. The four tabs let you work with four different
kinds of APIs:

Queue Managers From this panel you connect to or disconnect from a queue
manager. You can choose one of the existing queue
managers from the drop-down list. You select the API by
clicking one of the three push buttons. The scroll box on
the bottom displays whether the call was successful.

Queues From this panel you can open and close queues and put
or get messages.

Attributes From this panel you can execute MQSET and MQINQ
calls.

Transactions When you put or get messages under syncpoint you can
use this panel to commit them or roll them back.
MQBEGIN supports database coordination.

Figure 52. API Exerciser - Work with Queues
50 MQSeries Version 5.1 Administration and Programming Examples

Figure 52 on page 50 shows the Queues panel. You select a queue from the
drop-down list and then click Open. The return code will be displayed on the
bottom of the panel. The you can click MQPUT and enter some text in the
subsequent message window as shown below.

Figure 53. API Exerciser - Open Options
Chapter 3. MQSeries for Windows NT Version 5.1 51

If you don’t want to use the defaults for the MQOPEN, click Advanced mode
and you are presented with the window shown in Figure 53 on page 51.

If you choose the same mode for the MQPUT, you will see the window below.
Here you can enter the message text and also set values in the message
descriptor and put message options.

Figure 54 on page 53 shows the open options you can choose. For example,
here you specify if you want to bind on open for a cluster queue.

Figure 55 on page 53 shows the first of five put option panels. Here you select
what message type you want to send, for example, a reply or request
message, and whether the message is persistent or not.

There are similar options for the other APIs. They are described, in detail, in
MQSeries Application Programming Reference, SC33-1673.
52 MQSeries Version 5.1 Administration and Programming Examples

Figure 54. API Exerciser - Message Descriptor (One of Five Panels)

Figure 55. API Exerciser - PMO Options
Chapter 3. MQSeries for Windows NT Version 5.1 53

54 MQSeries Version 5.1 Administration and Programming Examples

Chapter 4. Creating a Cluster with the MQExplorer

In this chapter we describe how to create a cluster of four queue managers
on the Windows NT platform. The purpose of the following exercises is to
introduce you to:

1. The MQExplorer interface

2. Some clustering and scripting ideas. Refer to SupportPac MC73 for some
further ideas in this area.

3. Some ideas about how workload balancing works.

Figure 57 on page 56 shows the environment that we will create. Notice that
not very many channel definitions will be made by us. This is one of the
attractive administrative features of clusters; hand-made definitions are
minimal and the cluster does the rest.

We will be building this environment twice, first using the MQExplorer and
then using RUNMQSC. This is described in Chapter 5, “Creating a Cluster
with Scripts” on page 95.

Note: Be aware that changes are not refreshed immediately within the
MQSeries Explorer. Changes take time to be reflected through the cluster.
When you have made changes and they do not appear on the screen, click
the Refresh button. Figure 56 shows where the Refresh button is found (just
above the mouse cursor).

Figure 56. MQSeries Explorer - Refresh Button
© Copyright IBM Corp. 1999 55

Figure 57. Cluster with Four Queue Managers

In this example, we build four queue managers in a single cluster. In the
illustrations that follow, all the queue managers are built on the same physical
machine. If you want to follow the instructions to create your own cluster, build
at least one of the queue managers on a different machine, if possible. Bear
in mind also that having multiple queue managers on a single machine
implies that we will be using TCP/IP listener ports other than 1414.

If you have built the default configuration, or if you have already created a
queue manager, then the MQExplorer window you see will be different from
the one shown in Figure 58 on page 57.

QM_1

CLQ_1

QM_4 QM_3

QM_2

CLQ_1
CLQ_1

TO_QM3
CLUSRCVR

(1417)

TO_QM2
CLUSRCVR

(1416)

TO_QM4
CLUSRCVR

(1418)

TO_QM1
CLUSRCVR

(1415)

QM3
SSDR

TO_QM3
CLUSSDR

TO_QM1
CLUSSDR

TO_Q
CLUS

REPOS

CL_MQ51

REPOS

CL_MQ51

CLQ_1

CLQ_ACROSS_2_3_4

CLQ_ACROSS_2_3_4

CLQ_ACROSS_2_3_4
56 MQSeries Version 5.1 Administration and Programming Examples

Figure 58. MQSeries Explorer - No Queue Managers Created Yet

In Figure 59 through Figure 63, all queue managers and clusters have been
deleted. Feel free to retain any definitions you already have, but you will have
to allow for the differences between the figures in this text and your own
MQExplorer screen.

4.1 Creating the Queue Managers

First, let us create the first of the four queue managers, QM_1. This is done
with the following steps:

1. Right-click Queue Managers and select New and then Queue Manager,
as shown in Figure 59 on page 58. This brings up the window shown in
Figure 60 on page 58.

2. Type the queue manager name and SYSTEM.DEAD.LETTER.QUEUE as
the name of the dead-letter queue. To avoid any errors in managing the
cluster, we avoid having any default queue managers. So don’t mark the
check box. To continue, click Next.

3. In step 2, shown in Figure 61 on page 59, leave the settings as they
appear and click Next again. Since we created a development
environment, circular logging is fine. In a production environment,
however, you would always use linear logging.

4. In step 3, shown in Figure 62 on page 59, select both check boxes. Start
Queue Manager causes the queue manager to start automatically when
you boot the system. Create Server Connection Channel allows for
remote administration in this queue manager.
Chapter 4. Creating a Cluster with the MQExplorer 57

Figure 59. Creating a Queue Manager

Figure 60. Creating a Queue Manager - Step 1
58 MQSeries Version 5.1 Administration and Programming Examples

.

Figure 61. Creating a Queue Manager - Step 2

Figure 62. Creating a Queue Manager - Step 3
Chapter 4. Creating a Cluster with the MQExplorer 59

Figure 63. Creating a Queue Manager - Step 4

5. In step 4, shown in Figure 63, you can have the MQExplorer create and
maintain the listener for the queue manager. For this example, we mark
this check box. The listener will be started automatically, too.

When considering the Listen On Port Number field, bear in mind that we
will build the cluster in the same physical machine. Having multiple queue
managers on a single machine implies that we will be using TCP/IP
listeners ports other than 1414. We will use the following ports:

Table 4. Queue Managers and Port Numbers

Queue Manager Name TCP/IP Port

QM_1 1415

QM_2 1416

QM_3 1417

QM_4 1418
60 MQSeries Version 5.1 Administration and Programming Examples

Figure 64. Creating a Queue Manager - Completed

When you have finished all of the above, your MQSeries Explorer window
should look like the windows shown in Figure 64. Now let us look at the
objects that have been created for you:

1. Expand Queue Managers.

2. Expand QM_1.

3. Expand Advanced.

4. Click Channels.

You will see no channels unless you explicitly want system objects shown.
To do that:

5. Click View on the menu bar.

6. Click Show System Objects.

Now you see the channels as shown in Figure 65 on page 62.

7. If you click Queues, you will see the windows shown in Figure 66 on page
62.

There are two new channels and three new queue definitions in Version 5.1:

• SYSTEM.DEF.CLUSSDR channel

• SYSTEM.DEF.CLUSRCVR channel

• SYSTEM.CLUSTER.COMMAND.QUEUE

• SYSTEM.CLUSTER.REPOSITORY.QUEUE

• SYSTEM.CLUSTER.TRANSMIT.QUEUE
Chapter 4. Creating a Cluster with the MQExplorer 61

Figure 65. Creating a Queue Manager - Automatically Created Channels

Figure 66. Creating a Queue Manager - Automatically Created Queues

Now, create the other three queue managers, QM_2, QM_3 and QM_4,in
exactly the same way. However, use the ports from Table 4 on page 60.
62 MQSeries Version 5.1 Administration and Programming Examples

When you have created all four queue managers, your MQSeries Explorer
window should contain the information shown in Figure 67. All queue
managers should be running.

Figure 67. MQSeries Explorer Showing Four Queue Managers

How can you verify that you entered the right port numbers?

1. Click Start ->Programs -> MQSeries Services.

2. Expand MQSeries Services. You will now see the four queue managers.

3. Double-click the first queue manager.

4. Right-click the listener and select Properties from the menu.

5. Click the Parameters tab.

6. Verify the port.

7. Repeat steps 3 through 6 for the other three queue managers.

Note: On UNIX, you have to edit the etc\services file to define the port.

4.2 Creating a Cluster with Two Repository Queue Managers

At this time we have four queue managers, but we did not build the cluster
yet. To create a cluster, click Cluster and follow these steps:

No two queue managers can share the same IP address and the same port
number.

Important
Chapter 4. Creating a Cluster with the MQExplorer 63

Figure 68. Creating a Cluster

1. Select New -> Cluster. This is shown above.

2. You will see the Create Cluster Wizard as in Figure 69 on page 65. You
don’t have to enter anything in this window. Read what the wizard does for
you and click Next.

3. Now you have to name the cluster. As you can see, Figure 70 on page 65,
we called our cluster CL_MQ51. For this example, do likewise. Then click
Next.

4. In the next window (Figure 71 on page 66) you are asked to enter the first
repository queue manager. For this exercise, we let QM_1 maintain the
first repository. This is also the default.

Whether you select the check box for local or remote depends on where
you have defined your queue manager. Since all our queue managers are
on the same machine, we selected Local on this computer.
64 MQSeries Version 5.1 Administration and Programming Examples

Figure 69. Create Cluster Wizard

Figure 70. Create Cluster Wizard - 1
Chapter 4. Creating a Cluster with the MQExplorer 65

Figure 71. Create Cluster Wizard - 2

Figure 72. Create Cluster Wizard - 3
66 MQSeries Version 5.1 Administration and Programming Examples

Is the button Local (on this computer) disabled?

If yes, you are using a DHCP server to obtain a TCP/IP address. Change
the network settings before you create the cluster.

5. Click Next again and you will be asked to choose the second repository
queue manager as in Figure 72 on page 66. For this exercise, choose
QM_3 from the drop-down list as the second repository. Also, mark for this
queue manager Local on this Computer. All our queue managers are
local. Then click Next again.

6. In the next window, Figure 73 on page 68, the wizard gives you some hints
on naming cluster channels. Click Next.

7. Now the wizard will present window 4a shown in Figure 74 on page 68.
Here you specify the cluster receiver channel for QM_1, our first repository
queue manager. We have chosen use TO_QM1.

The Cluster receiver connection name is of the form <machine
name>(<port>), where <machine name> is either a TCP/IP address or
should resolve to one. The <port> is the IP port on which the listener for
the queue manager (whose cluster receiver channel we are defining) is
listening, such as WTR05246.itso.ral.ibm.com(1415).

8. Click Next when you have entered the cluster receiver name, and the
wizard will take you to window 4b to name the second repository’s cluster
receiver channel. As you can see in Figure 75 on page 69, we followed the
same pattern as for the first repository and named the channel TO_QM3.

Notice that the port is 1417.

9. Clicking Next again takes you to the last wizard window, shown in Figure
76 on page 69. You can read the summary and when you click Finish the
cluster will be created.

10.Figure 77 on page 70 shows you the result that you should now see in the
MQSeries Explorer window. Note that there are only two queue managers
in the cluster at this stage. Remember, we have only added the repository
queue managers. The next step will be to add the other two queue
managers to the cluster, but not full repositories.

The channels TO_QM1 and TO_QM3 in both QM_1 and QM_3 should be
running.

How can you find out whether a queue manager holds a repository?

Right-click a queue manager name, select Properties and then on the
Cluster tab.
Chapter 4. Creating a Cluster with the MQExplorer 67

Figure 73. Create Cluster Wizard - 4

Figure 74. Create Cluster Wizard - 4a
68 MQSeries Version 5.1 Administration and Programming Examples

Figure 75. Create Cluster Wizard - 4b

Figure 76. Create Cluster Wizard - 5
Chapter 4. Creating a Cluster with the MQExplorer 69

Figure 77. Creating a Cluster - Repository Queue Managers

4.3 Joining Queue Managers to a Cluster

Now the other two queue managers will join the cluster as partial-repository
queue managers. To add a queue manager to a cluster, follow these steps:

Figure 78. Joining a Cluster
70 MQSeries Version 5.1 Administration and Programming Examples

1. First, we add QM_2 to the cluster. From the MQSeries Explorer window,
right-click QM_2 under Queue Managers, select All Tasks ->Join
Cluster, as shown in Figure 78 on page 70.

2. Not surprisingly, this launches the Join Cluster Wizard, as shown in Figure
79. Click Next when you have finished reading what the wizard is about to
do for you.

Figure 79. Join Cluster Wizard

3. The second window, shown in Figure 80 on page 72, requires that you
enter the cluster name. This is CL_MQ51. Then click Next.

4. Now you have to identify the repository queue manager for QM_2. The
window is shown in Figure 81 on page 72. You could choose QM_1 or
QM_3 here, since both are full repositories. We chose QM_1, as you can
see. As in previous steps, the selection of Local or Remote will depend on
whether you are creating your four queue managers on a network of
machines, or a single machine, and whether there happens to be a
full-repository queue manager on your local machine or not. If you select
Local, as we did, a list of possible repositories will appear. If you select
Remote, you will have to enter the queue manager’s name and the queue
manager’s connection name.
Chapter 4. Creating a Cluster with the MQExplorer 71

Figure 80. Join Cluster Wizard - 1

Figure 81. Join Cluster Wizard - 2
72 MQSeries Version 5.1 Administration and Programming Examples

Figure 82. Join Cluster Wizard - 3

5. Clicking Next will bring you to the Naming cluster channels window, as
shown in Figure 82. Read what the wizard has to tell you and then click
Next again.

Note: Don’t worry about the comment that you will have to remember the
name of the cluster sender channel on the joining queue manager and
matching it to the cluster receiver channel of the repository, the naming
convention is very straight-forward and intuitive.

6. You have now arrived at window 3a. Name the joining queue manager’s
cluster receiver channel, as shown in Figure 83 on page 74. As the cluster
receiver name, type TO_QM2. The wizard will have suggested the name
TO_2, but if you have been following our naming scheme so far, type
TO_QM2. The Cluster receiver connection name is the IP address (or
resolvable name) and listening port of the joining queue manager.

7. Click Next and you will see the Identify the repository’s cluster receiver
channel window, as shown in Figure 84 on page 74. Once again, if the
repository is local to the queue manager that is joining, things are very
simple because the wizard correctly selects the name as TO_QM1 or
TO_QM3, depending on which full-repository you chose for this “joining
session”.
Chapter 4. Creating a Cluster with the MQExplorer 73

Figure 83. Join Cluster Wizard - 3a

Figure 84. Join Cluster Wizard - 3b
74 MQSeries Version 5.1 Administration and Programming Examples

The Cluster receiver connection name must be the IP address and
listening port of the repository. Click Next when the information is correct.

8. This brings you to the Join the queue manager to the cluster window, as
shown in Figure 85. There is nothing to do on this panel except check that
your details are correct and then click Finish.

Figure 85. Join Cluster Wizard - 4

At this time you see in the MQExplorer window:

• Four queue managers running

• Three queue managers in the cluster

To complete this fairly long step, you need to add the last queue manager,
QM_4, to the cluster. Proceed as for QM_2. The only difference is that you
might want to select a different repository when joining QM_4 to the cluster.

We have chosen QM_3 instead of QM_1 to be the repository queue manager
for QM_4. However, there is absolutely no need to choose a different one, as
long as the queue manager specified maintains a full repository.

The cluster receiver name is TO_QM4 and the port is 1418.
Chapter 4. Creating a Cluster with the MQExplorer 75

Figure 86. Cluster with Four Queue Managers

Now our cluster is built. Verify that your cluster looks the same as Figure 86.

Note: You may have to close and re-open the MQExplorer to see the added
queue manager in the cluster.

In Figure 86 on page 76 you also see the cluster channels that QM_1 knows.
To display them click Clusters ->CL_MQ51->Queue Managers in Cluster->
QM_1, Advanced and then click Cluster Queue Managers.

• QM_1 has a cluster receiver channel TO_QM1, which we defined in Figure
74 on page 68.

• The channel TO_QM3 connects QM_1 with the other full repository queue
manager, QM_3. We defined this channel for QM_3 in Figure 75 on page
69; The sender part has been automatically defined.

• TO_QM2 and TO_QM4 are automatically defined cluster sender channels.
The corresponding receiver channels were defined when QM_2 and QM_3
joined the cluster. Refer to Figure 83 and Figure 84 on page 74.
76 MQSeries Version 5.1 Administration and Programming Examples

Figure 87. Cluster Channels

Summary:

Figure 87 shows the queue managers in the cluster and the connections
defined between them.

• Queue managers in a cluster are connected with CUSSDR (cluster
sender) and CLUSRCVR (cluster receiver) channels.

• The two repository queue managers QM_1 and QM_3 are connected with
two channel pairs:

- TO_QM1 CLUSRCVR in QM_1 and CLUSSDR in QM_3

- TO_QM3 CLUSRCVR in QM_3 and CLUSSDR in QM_1

• QM_2 is connected to QM_1 with these channel pairs:

- TO_QM2 CLUSRCVR and automatic defined CLUSSDR in QM_1
- TO_QM1 CLUSRCVR and automatic defined CLUSSDR in QM_2

• QM_4 is connected to QM_3 with these channel pairs:

- TO_QM4 CLUSRCVR and automatic defined CLUSSDR in QM_3
- TO_QM3 CLUSRCVR and automatic defined CLUSSDR in QM_4

Q M 1 Q M 3

Q M 4Q M 2
Chapter 4. Creating a Cluster with the MQExplorer 77

4.4 Working with Local Queues in a Cluster

We will now use the MQSeries Explorer to create some local test queues.
These queues will not be shared within the cluster. They are only known to
the particular queue manager. For each of the four queue managers we
create one queue:

Table 5. Local Queues for Cluster Queue Managers

Figure 88. Defining a Local Queue

Use the following steps to create a queue:

Queue Manager Name Local Queue Name

QM_1 TQ_1

QM_2 TQ_2

QM_3 TQ_3

QM_4 TQ_4
78 MQSeries Version 5.1 Administration and Programming Examples

1. As shown in the Explorer window in Figure 88 on page 78, expand Queue
Managers and then QM_1, the queue manager for which we want to
create the queue TQ_1.

2. Right-click the Queues folder of QM_1, then select New -> Local Queue.
This brings up the window in Figure 89.

Figure 89. Create Local Queue - 1

3. Type TQ_1 (for “test queue 1”) in the Queue Name field. No other changes
need to be made on this panel. We will accept the defaults.

4. Next click the Cluster tab of the window shown in Figure 89.

5. In the Cluster tab, as shown in Figure 90 on page 80, we need to select
that Not shared in cluster for our TQ_1. That’s all. Click on OK and you
have created the first queue.

6. Repeat the above steps for the other three queue managers. Name the
test queues TQ_2, TQ_3 and TQ_4.

7. Display the queues to ensure that they are local queues and not cluster
queues. A queue should display only for a particular queue manager.
Chapter 4. Creating a Cluster with the MQExplorer 79

Figure 90. Create Local Queue - 2

Figure 91. System Queues and a Local Queue
80 MQSeries Version 5.1 Administration and Programming Examples

Figure 91 on page 80 shows all queues for QM_4, the system queues and the
local queue just defined. To hide system queues, click View in the task bar
and uncheck Show System Objects by clicking on that menu item.

Figure 92. Put a Test Message - 1

Figure 93. Put a Test Message - 2
Chapter 4. Creating a Cluster with the MQExplorer 81

As an alternative to amqsput and amqsgbr you can also put messages into
the queue and browse the contents of a queue from the MQSeries Explorer.

To put a message in a queue, follow these steps:

1. Click Queues to display the queues on the right side of the Explorer
window.

2. Right-click a queue, for example, TQ_4 as shown in Figure 92 on page 81
and select Put Test Message from the menu.

3. This brings up the window shown in Figure 93 on page 81. Type some
message data and click OK.

4. You will see that the current depth of the queue will increase. You see this
field in Figure 92 on page 81.

To browse messages in a queue, select Browse Messages from the menu.
This displays a window such as shown in Figure 94. You can customize the
columns you want to see.

Figure 94. Browse Messages in a Queue
82 MQSeries Version 5.1 Administration and Programming Examples

4.5 Creating a Shared Cluster Queue

Now let us create another test queue, CLQ_1. This queue will be shared
within the cluster. CLQ_1 will not only be visible within the entire cluster, but
we will create an instance of CLQ_1 on every one of our four queue
managers.

1. Bring up the Explorer window and right-click the Queues folder of QM_1.
Then select New and Local Queue, just as you did for TQ_1 in Figure 88
on page 78.

2. Figure 95 shows that you then enter the Queue Name (CLQ_1), just as we
did before. Then, also as done before, click the Cluster tab.

Figure 95. Creating a Shared Cluster Queue - 1

3. Figure 96 on page 84 shows that at this point we act differently from when
we created a simple local queue. Select the Shared in cluster button and
then select cluster CL_MQ51 from the Cluster selection box.

4. Click OK and you have created the copy of CLQ_1, which is local to
QM_1. Figure 97 on page 84 shows the result. As you can see, CLQ_1
now exists in QM_1. Notice that the queue type is Local and that it is in
cluster CL_MQ51. Also notice that TQ_1 does not belong to the cluster.
Chapter 4. Creating a Cluster with the MQExplorer 83

Figure 96. Creating a Shared Cluster Queue - 2

Figure 97. Local and Cluster Queues - QM_1
84 MQSeries Version 5.1 Administration and Programming Examples

Figure 98. Local and Cluster Queue - QM_2

Now, look at the Queues folder under QM_2 (or any queue manager in the
cluster other than QM_1). Figure 98 presents the view from QM_2. Notice
that CLQ_1 is displayed differently from here. That’s because although it is
visible (because it is a cluster queue) it is not local to QM_2.

You may also notice that the current queue depth is displayed only for local
queues, that is, queues hosted by the particular queue manager you selected
for display.

Note: Click the Refresh button if you don’t see the queue in all four queue
managers.

Now perform exactly the same steps that you used to create CLQ_1 in QM_1,
but this time create CLQ_1 in QM_2.

Figure 99 shows the result. Here you are looking at queues from the
viewpoint of QM_2. Notice that there are now two copies of CLQ_1. One is
local to QM_2 (from where you are looking) and the other is local to QM_1.
Figure 100 is a view of exactly the same thing, but from the viewpoint of
QM_1.

Notice that although we can see CLQ_1 from QM_1 and QM_2 (and the other
queue managers), we can see TQ_1 only from QM_1 and likewise we can
see TQ_2 only from QM_2 only .
Chapter 4. Creating a Cluster with the MQExplorer 85

Now create instances of CLQ_1 in QM_3 and QM_4. Once again, you can
refer to Figure 95 and Figure 96 on page 84.

Figure 99. Two Cluster Queue Instances Seen From QM_2

Figure 100. Two Cluster Queue Instances Seen From QM_1

The final result is shown in Figure 101 on page 87. Notice that from the
Queues folder of every one of our queue managers, we can now see all four
copies of CLQ_1. Remember also, these are not just views. There really are
four queues, all called CLQ_1.
86 MQSeries Version 5.1 Administration and Programming Examples

Figure 101. Four Cluster Queues Seen By QM_4

4.6 Creating a Second Cluster Queue

This is the last step in this exercise to create queues using the MQSeries
Explorer.

We are going to create another queue, which is duplicated within the cluster,
but this time we will only have three copies of it, on QM_2, QM_3 and QM_4.
We will need this sort of queue for one of the subsequent exercises. You start
out in the same way as for all the other queues created in this exercise.

1. Right-click the Queues folder under QM_2 and then select New -> Local
Queue.

2. Name this queue CLQ_ACROSS_2_3_4. This seems an unfortunate
name perhaps, but it will remind us, from within the Explorer, that this
queue has instances only on three of our four queue managers. When you
have typed in the name, click the Cluster tab.

3. Select Shared in cluster and in the Cluster field select CL_MQ51.
4. Click OK.

Repeat this process to define instances of CLQ_ACROSS_2_3_4 in QM_3
and QM_4. You see in Figure 102 on page 88 that QM_4 sees all three
instances and that one instance is local. QM_1 shown in Figure 103 on page
88 sees all queues, too. However, there is no local instance.
Chapter 4. Creating a Cluster with the MQExplorer 87

Figure 102. Queues Known To QM_4

Figure 103. Queues Known To QM_1
88 MQSeries Version 5.1 Administration and Programming Examples

4.7 Working with Clusters

To become more familiar with clusters and the MQSeries Explorer, let us do
some more exercises.

4.7.1 Putting and Getting Messages
Figure 104 below shows that when you right-click on a queue that is not local
to the queue manager (whose folder you are within), then you get the option
Put Test Message to put a test message into the queue.

Figure 105 on page 90 on the other hand, shows that when you right-click a
queue that is local to the queue manager (whose folder you are in), then you
get the additional option of Browse Message.

This conforms with what you already know about MQSeries; that you can get
messages from a local queue only. It is important to remember, when looking
at the wide view that clustering and the Explorer give you, that this is still the
case.

All the changes that make clustering possible have been made with the PUT.
The MQSeries GET is just as we have known it.

Figure 104. Put a Message on a Queue not Owned by the Queue Manager
Chapter 4. Creating a Cluster with the MQExplorer 89

Figure 105. Put a Message on a Queue Owned by the Queue Manager

4.7.2 Disassembling the Environment with the MQ Explorer
Bear in mind the following points if you are using the GUI to take apart the
environment.

• To delete a queue manager, you must first right-click it in the MQSeries
Explorer. A number of options will appear, one of which is Delete.

• A queue manager cannot be deleted while it is running. You must right
click the queue manager and select Stop, then wait till it is stopped before
you delete it. You may need to check the Refresh button to update the
display.

• A cluster cannot be deleted. It is not an object in its own right.

4.7.3 Stopping a Cluster
How do you stop a cluster?

You can’t really. A cluster is deemed to have stopped (by the Explorer) when
all its queue managers have stopped.

Try the following:

1. Using the Explorer, stop all the queue managers in cluster CL_MQ51.
90 MQSeries Version 5.1 Administration and Programming Examples

Notice how (perhaps after a refresh) the cluster has gone red too, into a
stopped state. But notice also how there is no start option on the cluster
when you right-click. That is because you can’t start a cluster either.

2. Stop the Explorer by clicking Console and selecting Exit from the menu.
Then start the Explorer again.

Why is cluster CL_MQ51 no longer displayed?

Because the “cluster” is not an object in its own right and in the absence of
any queue manager with an attribute of <clustername>, the Explorer is not
able to know of any cluster, <clustername>.

4.7.4 Showing a Cluster
Now try the following scenario:

• Right-click Clusters, and select Show Cluster.

• A Show Cluster dialog will pop up. In Cluster Name field enter CL_MQ51.

• In the Queue Manager Name field, enter one of the non-repository queue
managers, QM_2 or QM_4 from the list.

• Click OK.

• The message QM_2 (or QM_4) is not available is no surprise. Click OK
again.

Why are you now being asked whether you want to “show this cluster in
the console?”

Because the Explorer has no way of knowing whether a cluster called
CL_MQ51 exists anywhere!

• Click Yes (we do want to show this cluster on the console).

Start whichever non-repository queue manager (QM_2 or QM_4) you chose
in the Show Cluster dialog. Wait until that queue manager has properly
started. You may notice the CL_MQ51 cluster icon go briefly green, but then it
will change to a yellow warning sign.

Why isn’t the cluster regarded as “started” now?

Right-click the CL_MQ51 icon and select Connect. Now you see the reason!
QM_2 or QM_4 (whichever you chose) is not a repository queue manager for
cluster CL_MQ51.
Chapter 4. Creating a Cluster with the MQExplorer 91

4.7.5 Starting a Cluster
Start QM_1 or QM_3, or both, that is, one of the repository queue managers.
Wait until it/they are started. If you don’t get another error message either
click the Refresh button, or right-click CL_MQ51 and choose Connect.

Why is the error message talking about QM_2 (or QM_4)? We know they are
not repository queue managers for cluster CL_MQ51, but we have QM_1
and/or QM_3 running now, don’t we?

In 4.7.4, “Showing a Cluster” on page 91, you told the Explorer that QM_2 (or
QM_4) was a repository queue manager for cluster CL_MQ51. The Explorer
has not forgotten this.

Now start the remaining queue managers.

Does CL_MQ51 still show the yellow warning sign?

Yes, of course. You have to exit the Explorer and start it again. Then you will
see that all the queue managers are running (green) and that the Clusters
tree shows all queue managers.

More cluster administration examples are in Chapter 7, “MQSeries
Administration and Service” on page 123.

4.7.6 Summary
• Clusters appear as objects in the Explorer. The Explorer presents

information from many sources together.

• The Connection point to a cluster is a single repository. The first repository
cluster queue manager is used. Only TCP/IP is supported. The Explorer
supplies a list of cluster members and a complete set of cluster queues.

• The channel status for cluster channels is available from cluster queue
managers. Double-click on a cluster queue manager or use the pop-up
menu.
92 MQSeries Version 5.1 Administration and Programming Examples

• Cluster queues shared in more than one cluster are displayed once per
folder. This differs from MQSC, which displays it once per cluster.
Chapter 4. Creating a Cluster with the MQExplorer 93

94 MQSeries Version 5.1 Administration and Programming Examples

Chapter 5. Creating a Cluster with Scripts

In this chapter, we describe how to create a cluster with four queue managers
using scripts and RUNMQSC. The configuration is the same we used in the
previous chapter. It is shown again in Figure 106 below.

You may now spent some time thinking about how you would create runmqsc
configuration scripts and batch (.BAT) files (or other interpreted scripts) to
build exactly the same environment that we created with the GUI.

Figure 106. Cluster with Four Queue Managers

The easiest way is to look immediately at the examples provided in the files
shown in Table 6 on page 96.

QM_1

CLQ_1

QM_4 QM_3

QM_2

CLQ_1
CLQ_1

TO_QM3
CLUSRCVR

(1417)

TO_QM2
CLUSRCVR

(1416)

TO_QM4
CLUSRCVR

(1418)

TO_QM1
CLUSRCVR

(1415)

TO_QM3
CLUSSDR

TO_QM3
CLUSSDR

TO_QM1
CLUSSDR

TO_QM1
CLUSSDR

REPOS

CL_MQ51

REPOS

CL_MQ51

CLQ_1

CLQ_ACROSS_2_3_4

CLQ_ACROSS_2_3_4

CLQ_ACROSS_2_3_4
© Copyright IBM Corp. 1999 95

Table 6. Configuration Files for a Cluster

If you already build the cluster CL_MQ51 using the MQSeries Explorer as
described in Chapter 4, “Creating a Cluster with the MQExplorer” on page 55,
then there are two possible ways to proceed:

1. Destroy what you have already done and rebuild the same cluster from the
scripts provided.

2. Edit the scripts before you start so that they will create different queue
managers in a different cluster.

The choice is yours. One factor that may influence your decision is that the
scripts provided with this exercise are designed to create/destroy only a
cluster and its four queue managers, which are all running on a single
Windows NT machine. If you went to a lot of trouble in the previous (GUI)
exercise, creating a cluster across multiple machines, then you will probably
want to edit the scripts and create a new cluster.

If you decide to destroy and rebuild the cluster, you can do this either through
the MQSeries Explorer, or by running the end_dlt_all.bat script. Remember,
end_dlt_all.bat will function properly only if:

• All the cluster resources are on one Windows NT machine.

• You named everything exactly as described in the notes as you
progressed through.

File Name Description See

QM_1.cfg Configuration for queue manager QM_1 page 98

QM_2.cfg Configuration for queue manager QM_2 page 99

QM3_cfg Configuration for queue manager QM_3 page 100

QM_4.cfg Configuration for queue manager QM_4 page 101

scripts.out A sample of what the output should look
like

page 215

crt_str_all_bat A BAT file which builds the whole cluster
CL_MQ51

page 102

crt_str_all.log A log that crt_str_all.bat writes page 217

end_dlt_all.bat A BAT file that stops and destroys the
whole of cluster CL_MQ51

page 103
96 MQSeries Version 5.1 Administration and Programming Examples

Assuming you have spent some time trying some configuration files and .bat
files of your own, let’s now have a look at some of the ones provided. You may
think of improvements to these. They do, however, have the endearing quality
that they work!

The four configuration files for the four queue managers including some
comments are shown on the next four pages.

These, when run through RUNMQSC, create queue managers that are the
same as the ones we created manually using the Explorer, in Chapter 4,
“Creating a Cluster with the MQExplorer” on page 55.

Important: You must change the CONNAME in the channel definitions. If you
use TCP/IP and create all four queue managers on the same system (that is
most likely in a test environment), you may use one of the following instead:

• The name of your workstation
• The TCP/IP address of your workstation
• The TCP/IP loop back address 127.0.0.1

So, having created and started queue managers QM_1, QM_2, QM_3 and
QM_4, the commands to use these configuration files would be:

runmqsc QM_1 < QM_1.cfg
runmqsc QM_2 < QM_2.cfg
runmqsc QM_3 < QM_3.cfg
runmqsc QM_4 < QM_4.cfg

Or, if you want some output to a log file, as we did:

runmqsc QM_1 < QM_1.cfg > cluster_config.log
runmqsc QM_2 < QM_2.cfg >> cluster_config.log
runmqsc QM_3 < QM_3.cfg >> cluster_config.log
runmqsc QM_4 < QM_4.cfg >> cluster_config.log

A sample log file is shown in Appendix A, “Sample Configuration Output” on
page 215. In this example, all queue managers were created on the same
Windows NT machine. Therefore, we modified the CONNAME and used the
TCP/IP loopback address 127.0.0.1 in the connection name parameter. This
would work on your machine, too, provided you choose the same ports, 1415
through 1418, and the cluster name CL_MQ51.
Chapter 5. Creating a Cluster with Scripts 97

Figure 107. QM_1.cfg

Comments to the configuration files:

1 In theory it is preferable to bring up the cluster repository queue manager
first. However, if you try changing the order, you can see for yourself that
starting the non-repository queue managers first does not cause
problems.

2 This makes the queue manager part of the cluster CL_MQ51, and indeed
a repository for the cluster.

* This ALTER QMGR needs to run early. The scripts
* for QM_1 & QM_3 therefore need to be RUN first! 1

ALTER QMGR REPOS(CL_MQ51) 2

* This is the channel which would be created if you checked
* ‘Create Server Connection Channel to allow remote administration
* of the queue manager over TCP/IP’ in Step 3 of the Create
* Queue Manager wizard

* DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) REPLACE + 3
* CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSSDR) REPLACE + 4
TRPTYPE(TCP) CLUSTER(CL_MQ51) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1417)’)

DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSRCVR) REPLACE + 5
TRPTYPE(TCP) CLUSTER(CL_MQ51) NETPRTY(0) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1415)’)

DEFINE QLOCAL(TQ_1) REPLACE 6

DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE 7
98 MQSeries Version 5.1 Administration and Programming Examples

Figure 108. QM_2.cfg

3 We haven’t defined this channel. It is here just as a comment, in case you
would like to define it.

4 Necessary CLUSSDR queue to make the queue manager part of the
cluster.

5 Necessary CLUSRCVR channel to make us part of the cluster.

6 An old-style queue, only visible to the particular queue manager.

* Do not run this script until AFTER the scripts
* for QM_1 & QM_3 have been run ! 1

* This is the channel which would be created if you checked
* ‘Create Server Connection Channel to allow remote administration
* of the queue manager over TCP/IP’ in Step 3 of the Create
* Queue Manager wizard

* DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) REPLACE + 3
* CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSSDR) REPLACE + 4
TRPTYPE(TCP) CLUSTER(CL_MQ51) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1415)’)

DEFINE CHANNEL(TO_QM2) CHLTYPE(CLUSRCVR) REPLACE + 5
TRPTYPE(TCP) CLUSTER(CL_MQ51) NETPRTY(0) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1416)’)

DEFINE QLOCAL(TQ_2) REPLACE 6

DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE 7

DEFINE QLOCAL (CLQ_ACROSS_2_2_4) CLUSTER)CL_MQ51) + 8
REPLACE
Chapter 5. Creating a Cluster with Scripts 99

Figure 109. QM_3.cfg

7 CLQ_1 is the queue that we decided to create on every queue manager in
the cluster. All four instances of this queue can be seen from each of the
four queue managers.

8 CLQ_ACROSS_2_3_4 is a queue that we will use to experiment with
clustered queues in Chapter 6, “Workload Management” on page 107.

* This ALTER QMGR needs to run early. The scripts
* for QM_1 & QM_3 therefore need to be RUN first! 1

ALTER QMGR REPOS(CL_MQ51) 2

* This is the channel which would be created if you checked
* ‘Create Server Connection Channel to allow remote administration
* of the queue manager over TCP/IP’ in Step 3 of the Create
* Queue Manager wizard

* DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) REPLACE + 3
* CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSSDR) REPLACE + 4
TRPTYPE(TCP) CLUSTER(CL_MQ51) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1415)’)

DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSRCVR) REPLACE + ý
TRPTYPE(TCP) CLUSTER(CL_MQ51) NETPRTY(0) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1417)’)

DEFINE QLOCAL(TQ_1) REPLACE 6

DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE 7

DEFINE QLOCAL (CLQ_ACROSS_2_2_4) CLUSTER)CL_MQ51) + 8
REPLACE
100 MQSeries Version 5.1 Administration and Programming Examples

Figure 110. QM_4.cfg

Next, look at the .bat files crt_str_all and end_dlt_all in Figure 111 on page
102 and Figure 112 on page 103. These are simple Windows BAT files that
automatically create and delete our cluster environment. The comments
explain, in detail, what functions are performed.

* Do not run this script until AFTER the scripts
* for QM_1 & QM_3 have been run ! 1

* This is the channel which would be created if you checked
* ‘Create Server Connection Channel to allow remote administration
* of the queue manager over TCP/IP’ in Step 3 of the Create
* Queue Manager wizard

* DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) REPLACE + 3
* CHLTYPE(SVRCONN) TRPTYPE(TCP) REPLACE

DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSSDR) REPLACE + 4
TRPTYPE(TCP) CLUSTER(CL_MQ51) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1417)’)

DEFINE CHANNEL(TO_QM2) CHLTYPE(CLUSRCVR) REPLACE + ý
TRPTYPE(TCP) CLUSTER(CL_MQ51) NETPRTY(0) +
CONNAME(‘wtr05246.itso.ral.ibm.com(1418)’)

DEFINE QLOCAL(TQ_2) REPLACE 6

DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE 7

DEFINE QLOCAL (CLQ_ACROSS_2_2_4) CLUSTER)CL_MQ51) + 8
REPLACE
Chapter 5. Creating a Cluster with Scripts 101

Figure 111. crt_str_all_bat

Comments to the .bat files:

1 Create queue manager QM_1. Note that this definition (and the tree that
follows) is a completely generic or default queue manager. As yet they
have none of our special objects defined.

2 Create queue manager QM_3. Do you remember why we want to start
QM_1 and QM_3 before QM_2 and QM_4? See the comments in the
configuration files starting on page 98.

3 Create the non-repository queue managers QM_2 and QM_4.

4 Start all four queue managers.

5 We insert a comment on the log file crt_str_all.log.

crtmqm QM_1 1

crtmqm QM_3 2

crtmqm QM_2 3
crtmqm QM_4

strmqm QM_1 4
strmqm QM_3
strmqm QM_2
strmqm QM_4

echo "CLUSTER CONFIGURE QM_1........ 5...." > crt_str_all.log
runmqsc QM_1 < QM_1.cfg >> crt_str_all.log 6

echo "CLUSTER CONFIGURE QM_3.............." >> crt_str_all.log
runmqsc QM_3 < QM_3.cfg >> crt_str_all.log 7

echo "CLUSTER CONFIGURE QM_2.............." >> crt_str_all.log
runmqsc QM_2 < QM_2.cfg >> crt_str_all.log 8

echo "CLUSTER CONFIGURE QM_4.............." >> crt_str_all.log
runmqsc QM_4 < QM_4.cfg >> crt_str_all.log 9

start "QM_1 Listening on 1415" runmqlsr -t TCP -p 1415 -m QM_1 10

start "QM_2 Listening on 1416" runmqlsr -t TCP -p 1416 -m QM_2 11
start "QM_3 Listening on 1417" runmqlsr -t TCP -p 1417 -m QM_3 12
start "QM_4 Listening on 1418" runmqlsr -t TCP -p 1418 -m QM_4 13
102 MQSeries Version 5.1 Administration and Programming Examples

Figure 112. end_dlt_all.bat

6 This runs our definition file QM_1.cfg using for QM_1.

7 Similarly, RUNMQSC executes the definitions in QM_3.cfg for QM_3.

8 Similarly for QM_2.

9 And lastly for QM_4.

10 Start a listener on port 1415 for QM_1. The quoted string is a parameter
for the Windows start command and has nothing to do with MQSeries. It
just puts a nice title on the windows in which the listener will run.

11 Start a listener on port 1416 for QM_2.

ıⁿ Start a listener on port 1417 for QM_3.

13 Start a listener on port 1418 for QM_4.

14 Shut down the queue manager QM_2. As you can see, the order is
reversed for the shutdown. This time we prefer to take down the
non-repository queue managers first. As before, things will work fine in any
order. This is just a bit tidier.

15 Shut down the other three queue managers.

16 Close all listeners for queue managers QM_2, QM_4, QM_1 and QM_3.

17 Delete all four queue managers.

endmqm -i QM_2 14

endmqm -i QM_4 15
endmqm -i QM_1
endmqm -i QM_3

endmqlsr -m QM_2 16
endmqlsr -m QM_4
endmqlsr -m QM_1
endmqlsr -m QM_3

dltmqm QM_2 17
dltmqm QM_4
dltmqm QM_1
dltmqm QM_3
Chapter 5. Creating a Cluster with Scripts 103

To delete the environment you created in Chapter 4, “Creating a Cluster with
the MQExplorer” on page 55 execute the command:

end_dlt_all.bat

Be patient! This will take several minutes.

Instead of creating and starting the queue managers and running RUNMQSC
to create the MQSeries objects, you can execute the bat file:

crt_str_all

This process, too, takes several minutes. You should see the four listener
windows popping up. Also, check the log file to ensure that the environment
has been created error free.

5.1 Some Comments about the Listener

If you have read the crt_str_all.bat file carefully, you might have noticed that
four listeners are started manually with the RUNMQLSR command. In this
respect, our new cluster is somewhat different from the one created using the
MQSeries Explorer. In our present case, the Explorer is not around to build a
listener for us and start it. Remember Figure 63 on page 60?

There are two points to make about this:

1. We could have unchecked Create listener configured for TCP/IP n
Figure 63 on page 60. In that case we could have manually started our
listeners just as you see now in crt_str_all.

2. Now that the objects have been created manually outside the Explorer, the
Explorer will not start and stop listeners for the queue managers without
further action. The further action is that you can go to the MQSeries
MQServices Console (not the Explorer) and by right-clicking each queue
manager you can select New -> Listener. If you create listeners this way,
the Explorer will then manage them for you.

- The Advantage: Explorer manages your listeners and you don’t have
windows on the desktop with listeners running in them.

- The Disadvantage: You can’t easily see the listeners’ messages.

5.2 Some Comments about Cluster Objects

The scripts for QM_1 and QM_3 should be run before the scripts for QM_2
and QM_4. We want the two full repositories to be set up before other queue
managers attempt to join the cluster.
104 MQSeries Version 5.1 Administration and Programming Examples

The following queues and channels are among the default objects defined
when you create a queue manager on V5.1 of MQSeries. Therefore we don't
need to include them in our configuration scripts.

SYSTEM.CLUSTER.REPOSITORY.QUEUE

Each queue manager in a cluster has a local queue called
SYSTEM.CLUSTER.REPOSITORY.QUEUE. This queue is used
to store all the repository information.

SYSTEM.CLUSTER.COMMAND.QUEUE

Each queue manager in a cluster has a local queue called
SYSTEM.CLUSTER.COMMAND.QUEUE. This queue is used to
carry messages to the repository. The queue manager uses this
queue to send any new or changed information about itself to the
repository queue manager and to send any requests for
information about other queue managers.

SYSTEM.CLUSTER.TRANSMIT.QUEUE

Each queue manager has a definition for a local queue called
SYSTEM.CLUSTER.TRANSMIT.QUEUE. This is the transmission
queue for all messages to all queues and queue managers that
are within clusters.

SYSTEM.DEF.CLUSSDR

Each cluster has a default CLUSSDR channel definition called
SYSTEM.DEF.CLUSSDR. This is used to supply default values for
any attributes that you do not specify when you create a cluster
sender channel on a queue manager in the cluster.

SYSTEM.DEF.CLUSRCVR

Each cluster has a default CLUSRCVR channel definition called
SYSTEM.DEF.CLUSRCVR. This is used to supply default values
for any attributes that you do not specify when you create a
cluster-receiver channel on a queue manager in the cluster.

The above is from MQSeries Queue Manager Clusters, SC34-5349.
Chapter 5. Creating a Cluster with Scripts 105

106 MQSeries Version 5.1 Administration and Programming Examples

Chapter 6. Workload Management

In this chapter, we use two programs to put messages to a queue, and we use
the MQSeries Explorer to watch where the messages go. We will thus get
some idea of how workload balancing functions.

The first program is amqsput.exe, which is exactly as provided in the tools
directory when you installed MQSeries. This program simply puts messages
on a queue within a queue manager. You name the queue and the queue
manager as parameters when you invoke the command, thus:

amqsput <QueueName> <QueueManagerName>

The logic within amqsput flows like this:

• Do an MQCONN to a queue manager.

• Do an MQOPEN to a queue on that queue manager.

• Keep doing MQPUTs within a loop until the program user decides to stop.

• Do an MQCLOSE to the queue.

• Do an MQDISC to the queue manager.

The second program is clusput.exe. This program is really a copy of amqsput.
The only change is that when the program sets its open options, this version
sets the extra option MQOO_BIND_NOT_FIXED described below.

Figure 113. MQOPEN with BIND_NOT_FIXED

/***/
/* */
/* Open the target message queue for output */
/* */
/***/
O_options = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING /* but not if MQM stopping */
+ MQOO_BIND_NOT_FIXED; /* put to multiple clustered */

/* queues */
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */
© Copyright IBM Corp. 1999 107

If you follow the program logic for amqsput (above), the difference between
them is that:

• For amqsput, between the MQOPEN and the MQCLOSE all messages will
be MQPUT to a single instance of the cluster queue <QueueName> (see
above).

This doesn’t mean that workload balancing isn’t working! The balancing
decision is made at MQOPEN time. If we run the whole program again, we
should see a different queue instance selected.

But, once again, for this second invocation of amqsput, between the
MQOPEN and the MQCLOSE all messages will be MQPUT to a single
instance of the cluster queue.

• For clusput, a different instance of the cluster queue is selected for each
MQPUT. That is to say, at MQOPEN time, no decision is made about the
instance of the cluster queue to which messages will be MQPUT.

Having established all that, we are ready to work with the exercises. But
before we begin, let us look at the new open options.

6.1 Controlling the Workflow

There are three bindings you can use to control how messages are
distributed to cluster queues:

• MQOO_BIND_ON_OPEN

• MQOO_BIND_NOT_FIXED

• MQOO_BIND_AS_Q_DEF

The third option, bind as specified in the queue definition, is the default.
When you define a queue you may specify for the DEFBIND keyword either
the OPEN or NOTFIXED parameter, where OPEN is the default. Here is an
example:

def ql(MYQUEUE) CLUSTER(MYCLUSTER) DEFBIND(NOTFIXED)

The parameter specified in the queue definition is overwritten by what you
choose in the MQOPEN.

• Programs that send a series of messages to another application should
use BIND_ON_OPEN. It guarantees that all messages sent between the
MQOPEN and MQCLOSE are put in the same instance of the queue.

• BIND_NOT_FIXED means that each single message is put into a different
queue, either round-robin or according to the logic of a workload exit.
108 MQSeries Version 5.1 Administration and Programming Examples

Note: If the local queue manager owns an instance of the queue, all
messages will be placed in that queue.

6.2 A Workload Distribution Example

For this example, we use the configuration created in the previous chapter.
Before we begin, let us clear the cluster queues CLQ_ACROSS_2_3_4 in
QM_2, QM_3 and QM_4. QM_1 does not own an instance of this queue.
Then let us see how the queue manager behaves when you use the bind
options for the MQOPEN.

For this example we provide the following files:

Table 7. Files for Workload Distribution Example

6.2.1 Getting Prepared
If you created the queue managers with scripts then the listeners are not
automatically started unless you followed the guidelines in 5.1, “Some
Comments about the Listener” on page 104.

We also include a handy program that you can run to clear queues instead of
using the MQ Explorer. You invoke the program with the command:

fastget CL_ACROSS_2_3_4 QM_2

File Name Description See

clusput.c Source code of modified amqsput to put
messages with BIND_NOT_FIXED

page 221

clusput.exe Executable

fastget.c Source of modified amqsget to read
messages from a queue even if they are
too long for the buffer. This is useful as a
simple way to clear a queue.

page 227

fastget.exe Executable

str_all_bat A BAT file that starts all four queue
managers and their listeners

page 110

end_all.bat A BAT file that stops all four queue
managers and their listeners

page 110
Chapter 6. Workload Management 109

Figure 114. str_all.bat

Figure 115. end_all.bat

6.2.2 Clearing a Cluster Queue
Obviously, if there are no messages on any instances of this queue, you can
skip the next steps (at least for the first time).

You can use fastget.exe or the MQSeries Explorer as follows:

1. Inside MQSeries Explorer, look at the queue managers within cluster
CL_MQ51.

Go to each of the queue managers QM_2, QM_3, and QM_4.

2. Select Queues, then select (for each queue manager) the version of
CLQ_ACROSS_2_3_4 which for that queue manager is displayed as Local
under Queue Type.

strmqm QM_1
strmqm QM_3
strmqm QM_2
strmqm QM_4
start "QM_1 Listening on 1415" runmqlsr -t TCP -p 1415 -m QM_1
start "QM_2 Listening on 1416" runmqlsr -t TCP -p 1416 -m QM_2
start "QM_3 Listening on 1417" runmqlsr -t TCP -p 1417 -m QM_3
start "QM_4 Listening on 1418" runmqlsr -t TCP -p 1418 -m QM_4

start endmqm -i QM_2
start endmqm -i QM_4
start endmqm -i QM_1
start endmqm -i QM_3
echo Hit ENTER WHEN ALL THE QUEUE MANAGERS HAVE STOPPED
pause
endmqlsr -m QM_2
endmqlsr -m QM_4
endmqlsr -m QM_1
endmqlsr -m QM_3
pause
110 MQSeries Version 5.1 Administration and Programming Examples

Figure 116. Clearing a Cluster Queue

3. Right click that queue. Select All Tasks from the menu and then Clear
Messages.

4. Respond to Clear all messages from the queue? with a Yes.

5. Respond to The queue has been cleared of messages with OK.

6.2.3 Putting Using Bind On Open
We use the sample program amqsput to put some messages in a queue.

1. From a command prompt enter the command:

amqsput CLQ_ACROSS_2_3_4 QM_1

2. Next, you will see

Sample AMQSPUT0 start
target queue is CLQ_ACROSS_2_3_4

The program is ready for you to enter data (messages).

3. Type the following three lines on the command line: (You will need to press
Enter after each line).

p1
p2
p3
Chapter 6. Workload Management 111

4. After the last line, press Enter a second time and you should see:

Sample AMQSPUT0 end

Figure 117 shows the window with the input in bold.

Figure 117. Putting Messages In a Queue

5. Now go to MQSeries Explorer. Where are your messages?

If you haven’t seen this aspect of Explorer yet, choose an instance of
CLQ_ACROSS_2_3_4 (not the one on QM_1, but one showing Local under
Queue Type). The window shown in Figure 118 shows that
CLQ_ACROSS_2_3_4 that belongs to QM_3 contains three messages.

Figure 118. Displaying Depth of Cluster Queue

Microsoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>amqsput CLQ_ACROSS_2_3_4 QM_1
Sample AMQSPUT0 start
target queue is CLQ_ACROSS_2_3_4
p1
p2
p3

Sample AMQSPUT0 end

C:\>
112 MQSeries Version 5.1 Administration and Programming Examples

6. Now right-click the queue and select Browse Messages. You can see the
amount and the contents at the same time.

Why are the messages all on the same queue manager?

Before answering that, let us put some more messages.

7. Return to the command prompt and enter three more messages, as you
did before. You enter:

amqsput CLQ_ACROSS_2_3_4 QM_1
p4
p5
p6

8. Now go to MQSeries Explorer.

Why are p4, p5 and p6 on the same queue manager?

Are they on the same queue manager as p1, p2 and p3?

Why is that?

Note: We had to exit the MQ Explorer and then start it again to make it
show the current depths of the queue.

We have several instances of the same queue. The three messages (p4,
p5, p6) are all in the same physical queue, p1, p2 and p3 are in a different
physical queue on a different quue manager. This is because amqsput
binds on open. If you put three more messages, then you will see that
those are sent to the third queue manager. This proves that the workload
distribution is truly round-robin.
Chapter 6. Workload Management 113

6.2.4 Putting Using Bind Not Fixed
For this exercise we use clusput.exe, a modified version of amqsput that uses
the option MQOO_BIND_NOT_FIXED as shown in Figure 113 on page 107.

Before you start you may clear the three instances of CLQ_ACROSS_2_3_4
using either fastget.exe or the MQ Explorer as described in 6.2.2, “Clearing a
Cluster Queue” on page 110.

1. Return to the command prompt and enter three (more) messages using
clusput as shown below. You type the values shown in bold.

2. Go back to the MQSeries Explorer.

Where are your messages?

It’s a very different story with clusput, isn’t it?

Each instance of the queue has one (additional) message in it.

3. Return to the command prompt and enter three more messages, again
with clusput. You enter:

clusput CLQ_ACROSS_2_3_4 QM_1
c4
c5
c6

4. Check with Explorer. Is this what you expected?

Yes, now there are two (additional) messages in each queue. The
messages are distributed round-robin.

5. Return to the command prompt and enter three more messages, this time
returning to using amqsput.

amqsput CLQ_ACROSS_2_3_4 QM_1
p7
p8
p9

6. Check with Explorer. Did you predict this?

C:\>clusput CLQ_ACROSS_2_3_4 QM_1
MQ V5.1 Update Class: Workload-Balance enabled PUT
target queue is CLQ_ACROSS_2_3_4
c1
c2
c3

MQ V5.1 Update Class: Workload-Balance enabled PUT: end

F:\>
114 MQSeries Version 5.1 Administration and Programming Examples

The sample program amqsput uses the default MQOO_BIND_ON_OPEN.
Therefore, all three message go to the same instance of the queue. In the
window below, you see that the first, fourth, and the three new messages
are all in CLQ_ACROSS_2_3_4 of QM_4.

6.2.5 Putting to a Local Cluster Queue
You can probably remember, back in 4.5, “Creating a Shared Cluster Queue”
on page 83 or in Chapter 5, “Creating a Cluster with Scripts” on page 95 that
you created a queue called CLQ_1. This queue is very like
CLQ_ACROSS_2_3_4, except that there exists a queue instance on every
one of the four queue managers.

Repeat the steps described in the section above, but this time use CLQ_1 as
the queue name everywhere that you used CLQ_ACROSS_2_3_4.

Do you understand the results?

All messages have ended up on the same queue, which is QM_1’s instance
of CLQ_1. The queue manager always puts messages in a local instance if
one exists.
Chapter 6. Workload Management 115

6.3 Writing a Workload Management Exit

In this section, we describe how to write an MQSeries exit that will be called
by the queue manager whenever it has to determine in which of a number of
shared clustered queues it should put a message.

We will not actually make a decision about the queue. Our exit will be read
only. It will examine some of the information that the queue manager has
passed to it and then return without changing the DestinationChosen member
of the MQWXP structure. This means that our exit accepts the choice that the
queue manager had already made before our exit was called.

6.3.1 About the Example
We suggest that you begin by using the supplied workload exit shown in
6.3.2, “Commented Program Listing for Exit WLlogger.c” on page 118.

Also we suggest that you do your PUTs from QM_1 to a cluster queue called
CLQ_ACROSS_2_3_4. This is the same as in previous exercises with cluster
queues. The reason is also the same. We want to work from a queue
manager that doesn’t have the named queue and we want to PUT to a queue
name of which there are multiple instances in the cluster so that we can see
how workload balancing works.

The emphasis here is not on seeing the workload balancing working. Proceed
as in previous experiments with cluster queues if you want to do that. We now
want to see how to drive our exit and look at the output it logs for various
operations.

The exit supplied is in source form and executable (for Windows only). If you
want to change/enhance the exit supplied, follow these instructions:

1. Compile the code using the command (for VisualAge C++):

icc /Ge- /Gm+ /Gf- WLlogger.c

2. You then need to copy the WLlogger.dll into the directory <mqmtop>\exits,
for example:

c:\mqm\exits

3. Alter the queue manager so that it will drive your new exit:

ALTER QMGR CLWLDATA('<log_file_path_name>')
ALTER QMGR CLWLEXIT('WLlogger(clwlFunction)')
116 MQSeries Version 5.1 Administration and Programming Examples

Notes:

• The CLWLEXIT should be typed exactly as above, unless you rename
your dll from WLlogger.DLL to something else.

• The CLWLDATA sets the <log_file_path_name>. This is wherever you
want your log to be. We used c:/temp/wllogger.log

• You could put these two ALTER QMGR statements in the scripts you built
in Chapter 5, “Creating a Cluster with Scripts” on page 95 if you want. It
would be a good idea because if you use end_dlt_all and crt_str_all you
are bound to forget to put them in each time.

• These ALTER QMGR statements only need to be added to QM_1 (or
whereever you want to do your PUT from). Remember, the workload
management (and associated exits) are driven from the MQPUT call.

REMEMBER: the queue manager passes the data in CLWLDATA to you
program as is. It passes it in the ExitData field of MQWXP. It passes it to the
clwlFunction entry-point of DLL WLlogger.

Re-code WLlogger.c to do something you find interesting.

Remember, the queue manager hands your exit code an MQWXP. The queue
manager will accept as your decision for the final destination anything that
you put in the DestinationChosen field of that MQWXP. What would happen if
you put some garbage characters in there?

You may think of some other interesting ways to decide on a
DestinationChosen.
Chapter 6. Workload Management 117

6.3.2 Commented Program Listing for Exit WLlogger.c
/**/
/* */
/* Original Program name: AMQSWLM0 1 */
/* */
/**/
/* This exit has been altered for this book. */
/* We use it now to print some interesting details of dynamic */
/* workload balancing to a log. */
/* We get the name of the log from the CLWLDATA */
/* So you would set up the log name using: */
/* */
/* ALTER QMGR CLWLDATA('<log_file_path_name>') 2 */
/* */
/* where <log_file_path_name> e.g. c:/temp/wllogger.log */
/* */
/* and you would enable the workload exit using: */
/* */
/* ALTER QMGR CLWLEXIT('WLlogger(clwlFunction)') 3 */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <cmqc.h>
#include <cmqxc.h>
#include <cmqcfc.h>

__declspec (dllexport) void MQENTRY clwlFunction (MQWXP *parms); 4

void MQStart() {;} /* dummy entry point - for consistency only */

void MQENTRY clwlFunction (MQWXP *parms) 5

{
MQLONG index;
MQWDR * qmgr; 6

MQWQR * queue; 7

1 This program was copied from a sample provided with MQSeries. It is now unrecognizable.
2 This is what you enter in the Cluster Workload Exit Data field. Right-click Queue Manager in

the Explorer, select Properties, then click the Cluster tab. Now you see the Cluster Workload
Exit Data field.

3 From the same Properties box as in step 2, enter literally WLLogger(clwlFunction) in the Clus-
ter Workload Exit field. This makes sure the quuee manager calls our exit and our entry point.

4 This is for the preprocessor. We want it to know that we we want clvlFunction to be exported in
the DLL that we create. (Only exported functions can be called from outside the DLL.)

5 Out Entry Point. Notice that we are expecting an MQWXP structure when we are called and we
are going to call it parms.

6 See the book “Queue Manager Clusters” Reference Section for the structure of MQWDR.
7 Likewise for MQWQR.
118 MQSeries Version 5.1 Administration and Programming Examples

FILE *mylogger; 8

char myQMname[48], myQname[48]; 9

mylogger = fopen(parms->ExitData,"a"); 10

fprintf(mylogger,"\nWLlogger Workload Exit entered.\n"); 11

switch (parms->ExitReason) 12

{
case MQXR_INIT: fprintf(mylogger,"\tExit Initialisation\n"); 13

break;

case MQXR_TERM: fprintf(mylogger,"\tExit Termination\n"); 14

break;

case MQXR_CLWL_OPEN: fprintf(mylogger,"\tMQOPEN Processing\n");
break;

case MQXR_CLWL_PUT: fprintf(mylogger,"\tMQPUT or MQPUT1 Processing\n");
break;

case MQXR_CLWL_MOVE: fprintf(mylogger,"\tFrom MCA when msg state has changed\n");
break;

case MQXR_CLWL_REPOS: fprintf(mylogger,"\tMQPUT or MQPUT1 for repos-mgr PCF msg\n");
break;

case MQXR_CLWL_REPOS_MOVE: fprintf(mylogger,"\tFrom MCA for repos-mgr PCF msg\n");
break;

default: fprintf(mylogger,"\tWarning: Cannot determine reason this Exit was called\n");
}

8 We will use this file as our log file.
9 Here we will store our own copies of qname and qmgrname. Basically we use these arrays to

translate a type MQCHAR48 into type string.
10 We open the log file. Where do we get the file name? Do you understand parms->ExitData?

Ask your lab instructor. This is how we get the data you stored in the queue manager’s Cluster
Workload Exit Data.

11 A friendly message to make a log entry whenever we are called for any reason.
12 Now starts the interesting bit. With parms->ExitReason we are looking into the ExitReason

member of the MQWXP structure that the queue manager passed to us, when it called us. Look in
the Reference Section of “Queue Manager Clusters”. Examine the layout of the MQWXP
structure. Locate the ExitReason member. Consider the possible values. Now, even if you’re
not sure of how a “C” program switch statement works, you should be able to work out what
this switch statement is attempting to do.

13 If ExitReason is MQXR_INIT we will write to the log that the exit has been called for Exit Ini-
tialization.

14 And so on for the other case entries of the switch.
Chapter 6. Workload Management 119

for (index = 0; index < parms->DestinationCount; index++) 15

{
qmgr = parms->DestinationArrayPtr[index]; 16

memcpy (myQMname, qmgr->QMgrName, 48); 17

*(myQMname + strcspn(myQMname, " ")) = 0x00; 18

fprintf(mylogger,"\t\tFOR QUEUE MANAGER: %s\n", myQMname); 19

switch (qmgr->QMgrFlags) 20

{
case MQQMF_REPOSITORY_Q_MGR:

fprintf(mylogger,"\t\tDest is a Repos Qmgr\n");

case MQQMF_CLUSSDR_USER_DEFINED:
fprintf(mylogger,"\t\tClus sender channel was defined manually\n");

case MQQMF_CLUSSDR_AUTO_DEFINED:
fprintf(mylogger,"\t\tClus sender channel was defined automatically\n");

case MQQMF_AVAILABLE:
fprintf(mylogger,"\t\tDest Qmgr available to receive messages\n");

default:
fprintf(mylogger,"\t\tNothing meaningful in MQWDR:QMgrFlags\n");

}

15 Look at DestinationCount in MQWXP. Can you see why we need a for loop here?
16 On pass index through the loop, we will be pulling the appropriate qmgr from the

DestinationArrayPointer of MQWXP.
17 Copy 48 characters from array QMgrName in MQWXP into array myQMname.
18 Find the first blank (0x20) in myQMname and turn into a binary zero (0x00). This makes

mqQMname a “proper” string in “C” terms. Strings in “C” must be terminated by a binary zero
(0x00).
Actually this coding is not quite correct because the first parameter of strcspn should be a
string. mqQMname is not a string when strcspn is called. This means that in theory we could
“run off the end of mqQMname” into storage we shouldn’t be accessing, looking for the 0x00
which indicates the end of the string. We get away with it because we know there will be a
blank (0x20) in the array before we run off the end. You should write better code than this.

19 Write a line (and indent it for clarity) to the log to say we are now looking at details of a queue
manager.

20 You should be able to work out this switch, by thinking about the last one. We are making our
decisions (in the case statements) based on the QMgrFlags member of structure MQWXP.
120 MQSeries Version 5.1 Administration and Programming Examples

 switch (qmgr->ChannelState) 21

{
case MQCHS_INACTIVE:

fprintf(mylogger,"\t\tChannel to %s not active\n", myQMname);
break;

case MQCHS_BINDING:
fprintf(mylogger,"\t\tChannel to %s binding\n", myQMname);
break;

case MQCHS_STARTING:
fprintf(mylogger,"\t\tChannel to %s starting\n", myQMname);
break;

case MQCHS_RUNNING:
fprintf(mylogger,"\t\tChannel to %s running\n", myQMname);
break;

case MQCHS_STOPPING:
fprintf(mylogger,"\t\tChannel to %s stopping\n", myQMname);
break;

case MQCHS_RETRYING:
fprintf(mylogger,"\t\tChannel to %s retrying\n", myQMname);
break;

case MQCHS_STOPPED:
fprintf(mylogger,"\t\tChannel to %s stopped\n", myQMname);
break;

case MQCHS_REQUESTING:
fprintf(mylogger,"\t\tChannel to %s requesting connection\n", myQMname);
break;

case MQCHS_PAUSED:
fprintf(mylogger,"\t\tChannel to %s paused\n", myQMname);
break;

case MQCHS_INITIALIZING:
fprintf(mylogger,"\t\tChannel to %s initialising\n", myQMname);
break;

default:
fprintf(mylogger,"\t\tCannot determine state of the channel to Qmgr %s\n", myQMname); 22

}

21 You should be able to work the rest out for yourself now. Switching on the ChannelState
field of the MQWDR structure pointed to by qmgr... right? Why are there break statements
in this switch? There weren’t any in the previous one.

22 The default statement is there in case none of the case statements match. It is not manda-
tory to have a default.
Chapter 6. Workload Management 121

if (parms->QArrayPtr) 23

{
queue = parms->QArrayPtr[index]; 24

memcpy (myQname, queue->QName, 48); 25

*(myQname + strcspn(myQname, " ")) = 0x00;
fprintf(mylogger,"\t\t\tFOR QUEUE: %s\n", myQname); 26

switch (queue->QFlags) 27

{
case MQQF_LOCAL_Q:

fprintf(mylogger,"\t\t\tThis is a LOCAL queue\n");
break;

default:
fprintf(mylogger,"\t\t\tCan't determine useful information from MQWQR:QFlags\n");

}
switch (queue->DefBind) 28

{
case MQBND_BIND_ON_OPEN:

fprintf(mylogger,"\t\t\tDefault Binding; done on MQOPEN\n");
break;

case MQBND_BIND_NOT_FIXED:
fprintf(mylogger,"\t\t\tDefault Binding; not Fixed\n");
break;

default:
fprintf(mylogger,"\t\t\tCannot determine default binding for this queue\n");

}

switch (queue->DefPersistence)
{
case MQPER_PERSISTENT: fprintf(mylogger,"\t\t\tPersistent by default: YES\n");

break;
case MQPER_NOT_PERSISTENT: fprintf(mylogger,"\t\t\tPersistent by default: NO\n");

break;
default: fprintf(mylogger,"\t\t\tCannot determine default persistence of queue\n");
}

}
}

fclose(mylogger); 29

return;
}

23 In “C”, any integer that is non-zero is deemed to have a value TRUE. Zero is FALSE. Why
do we need to test if the QArrayPtr field of MQWXP is greater than zero? We didn’t do
that for DestinationArrayPtr. Read the “Queue Manager Clusters” book again.

24 Just as the last time, we used index. We want a different queue each time through the for
loop. We get this by stepping through the array of pointers provided to us in QArrayPtr in
MQWXP. (Yes we’re still in the for loop. The indentation should help you work this out.)

25 This is the same “fiddle” as we saw before. We have an MQCHAR48 and we want a string.
26 Tell the logfile that we are now looking at details that pertain to a queue.
27 You can work this out now.
28 It’s time you coded a few of these switch / case constructs yourself. See what other data you

might like to log.
29 It is most essential to close the mylogger stream. Don’t rely on cleanup at program exit time to

close open streams. Remember, this is a DLL.
122 MQSeries Version 5.1 Administration and Programming Examples

Chapter 7. MQSeries Administration and Service

There are many new functions and options for administration available in
MQSeries Version 5.1; they are summarized below.

Which techniques are the most appropriate for a particular operation depends
mainly on the platform type.

On Windows NT, you can carry out most common administration and
operations tasks using the MQSeries Explorer and MQSeries Services GUI
tools. These tools make Windows NT a very convenient environment for
experimentation and development. However, it is much more efficient to use
one of the scripting techniques to populate and manipulate queue managers
once they have been created.

On other platforms where the MQSeries Explorer is not available, you must
use MQSeries control commands for some tasks, for example, when you want
to create a new queue manager.

Web Administration
A new NT web server hat supports a 'browser' interface to RUNMQSC that includes a basic script file management facility.
It enables you to construct more complex scripts that use conditional logic, looping, nesting and so on;

and it supports the configuration and administration of multiple local and remote Queue Managers on different platform types.

Microsoft Management Console (MMC)
These facilities are available on Windows NT only.

MQSeries Explorer
A full 'Windows-style' GUI interface that makes the use of Control Commands and RUNMQSC obsolete

for the creation, configuration, and operation of multiple local and remote Queue Managers.

MQSeries Services 'snap-in'
An MMC snap-in, accessible from the task-bar tray, for monitoring and controlling local Queue Managers.

Replaces the SCMMQM command (which is no longer available) for automating start up of MQSeries components.

Control Commands & RUNMQSC (no change, may still be used from the NT command line.)

MQSeries Administration Interface (MQAI)
A new programming interface, for procedural and OO languages, that makes it much easier to use PCFs.

Programmable Command Format (PCF) (no change)

MQSeries 5.1 Administration Interfaces
© Copyright IBM Corp. 1999 123

If your network configuration includes a Windows NT server with MQSeries
Version 5.1 installed on it, you can use the new Web Administration facility.
Otherwise, you will have to use runmqsc interactively or with a script file, as
you did with previous versions of MQSeries.

Web Administration enables you to use a Web Browser to do everything you
can do using runmqsc. In addition, it enables you to construct more
sophisticated scripts that can include conditional logic, looping, nesting, and
so on. And it includes a simple file management capability that you can use
to organize your script files in public and private data stores.

The Web Server that hosts these new facilities runs only on Windows NT, but
the browser that provides the human interface can run on any platform that
supports a Java-enabled Web Browser, such as Netscape Navigator1 or the
Microsoft Internet Explorer.

The MQSeries Services “snap-in” for the Microsoft Management Console
(MMC) and the MQSeries Explorer provide new operations and
administration interfaces for queue manager configurations on Windows NT.
Although you can still use MQSeries control commands (for example,
crtmqm, strmqm, and runmqsc) for many functions, the visual power and
ease of use of the new GUI tools is likely to make them very attractive to
customers who are accustomed to working with other products in the
Windows NT environment.

The MQSeries Explorer is mainly concerned with MQSeries objects. Use it to
define and configure queue managers, channels, queues, processes,
namelists, and so on. It includes a message browser, and can be used to put
“test” messages onto queues. You can also operate your MQSeries
configuration from the Explorer. For example, manually start and stop queue
managers and channels.

The MQSeries Services “snap-in” is mainly concerned with MQSeries
processes. Use it to control how you want your configuration to behave, for
example, which processes should be started automatically when Windows NT
is booted, whether you want a process to be restarted when it fails, or should
the NT system be rebooted. You can also operate the configuration manually
from here.

Note: The scmmqm command, which you used in Version 5.0 and earlier
versions when you wanted a queue manager or another MQSeries
component to start automatically when Windows NT was booted, no longer

1 We found that browser performance using the current Netscape product for Web Administration on the same platform as
the Web Administration Server is poor compared to the Internet Explorer.
124 MQSeries Version 5.1 Administration and Programming Examples

exists. In MQSeries Version 5.1 for Windows NT, the function of scmmqm is
replaced by a function of the Services snap-in; the scmmqm command is no
longer shipped with the product.

7.1 Experiments with Runmqsc and Clusters

The example described in this section is based on the configuration with the
four queue managers we created in Chapter 4, “Creating a Cluster with the
MQExplorer” on page 55. For this exercise, we use tools other than the
MQSeries Explorer to create a fifth queue manager, QM_5, and demonstrate
that it can participate an the cluster CL_MQ51 that has been set up earlier.

First, bring up the MQ Explorer and MQ Services GUIs. The windows should
contain the following:
Chapter 7. MQSeries Administration and Service 125

7.1.1 Creating a Queue Manager
Open a command prompt window and issue the command:

crtmqm QM_5

The new queue manager will appear automatically in the MQ Services GUI,
but not in the MQ Explorer window, not even if you refresh it. You have to
recycle the MQ Explorer.

To verify that the queue manager works, start it with the command:

strmqm QM_5

Run an application that uses it, such as runmqsc, and display the properties
of the queue manager. You will see that it works.
126 MQSeries Version 5.1 Administration and Programming Examples

Now check the status of QM_5 using the GUI interfaces:

• Both GUIs recognize the new queue manager and show it running
(provided you recycled the MQ Explorer).

• MQServices indicates that the star-up for QM_5 is manual.

• When you click QM_5 you will see that the following two components are
running:

- Queue Manager

- Command Server

• When you expand one of the queue managers created with the MQ
Explorer, you will see two additional components:

- Channel Initiator

- Listener

What can go wrong?

• When crtmqm fails with error AMQ7077, you are not authorized to perform
the requested operation.

When you want to use MQSeries control command, you must be logged
on as a member of the mqm security group.

• When strmqm or runmqsc fail with error AMQ8118, the queue manager
does not exist. Check spelling and case of the object names.

Before QM_5 will be able to participate in the cluster it will need a listener to
handle requests from partner queue managers to start inbound channels, and
a channel initiator to start outbound channels.

7.1.2 Starting the Listener
Open a command prompt window and issue the command:

start runmqlsr -t tcp -p 1419 -m QM_5

This brings up another window showing messages from the channel initiator
process.

Note: Since all five queue managers run in the same machine, their listeners
must have different ports.
Chapter 7. MQSeries Administration and Service 127

7.1.3 Starting the Channel Initiator
Try to start the channel initiator with the command:

runmqchi -m QM_5

You will see the error message shown below.

This command fails because the queue SYSTEM.CHANNEL.INITQ is already
open for input. The clue for this is in the amqerr01.log file for QM_5. You find
this file in the directory c:\mqm\qmgrs\QM_5\errors.

10/11/99 13:45:51
AMQ9509: Program cannot open queue manager object.

EXPLANATION:
The attempt to open either the queue or queue manager object
'SYSTEM.CHANNEL.INITQ' on queue manager 'QM_5' failed with reason code
2042.
ACTION:
Ensure that the queue is available and retry the operation.

Error code 2042 means that an object is in use.

You only just created the queue manager. Which process could have the
SYSTEM.CHANNEL.INITQ open?

The channel initiator starts automatically when you start a Version 5.1 queue
manager.

This is a change from Version 5.0 and earlier versions.

TMicrosoft(R) Windows NT(TM)
(C) Copyright 1985-1996 Microsoft Corp.

C:\>start runmqlsr -t tcp -p 1419 -m QM_5

C:\>runmqchi -m QM_5
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
10/11/99 13:45:51 AMQ9509: Program cannot open queue manager object.

C:\>
128 MQSeries Version 5.1 Administration and Programming Examples

Figure 119. SYSTEM.CHANNEL.INITQ

7.1.4 Connecting QM_5 to the Existing Cluster
Now we have to make QM_5 part of the cluster CL_MQ51. To do this, we
have to define two channels:

• A cluster sender channel pointing to one of the two existing repository
queue managers in the cluster

• A cluster receiver channel pointing back to QM_5
Chapter 7. MQSeries Administration and Service 129

We use runmqsc to define the channels. Then we verify that QM_5 is now
part of the cluster by displaying the cluster queue managers as seen by
QM_5. This is shown in Figure 120.

Figure 120. Adding a Queue Manager to a Cluster Using runmqsc

We can see in Figure 120 that QM_5 knows about both repository queue
managers. At this time QM_5 is not interested in QM_3 and QM_4. Look in
the listener’s window and you will see that the channel programs have
started.

Now go to the MQ Explorer GUI and expand the QM_5 tree.

• Click on Channels. Figure 121 on page 131 shows that the Explorer
recognizes the channels and shows that they are running.

• Next expand the Cluster Queue Manager branch as shown in Figure 122
on page 131. You will see the two repository cluster queue managers and
QM_5 itself.

• When you expand the Queue branch of QM_5 you will notice that all
queue instances that exist in the other queue managers are visible,
namely three instances of CLQ_ACROSS_2_3_4 and four instances of
CLQ_1.

C:\>runmqsc QM_5
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.
Starting MQSeries Commands.

def chl(TO_QM1) chltype(clussdr) cluster(CL_MQ51) trptype(tcp) +
3 : def chl(TO_QM1) chltype(clussdr) cluster(CL_MQ51) trptype(tcp) +

conname('127.0.0.1(1415)') replace
: conname('127.0.0.1(1415)') replace

AMQ8014: MQSeries channel created.
def chl(TO_QM5) chltype(clusrcvr) cluster(CL_MQ51) trptype(tcp) +

4 : def chl(TO_QM5) chltype(clusrcvr) cluster(CL_MQ51) trptype(tcp) +
conname('127.0.0.1(1419)') replace

: conname('127.0.0.1(1419)') replace
AMQ8014: MQSeries channel created.
dis clusqmgr(*)

5 : dis clusqmgr(*)
AMQ8441: Display Cluster Queue Manager details.

CLUSQMGR(QM_1) CLUSTER(CL_MQ51)
CHANNEL(TO_QM1)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM_3) CLUSTER(CL_MQ51)
CHANNEL(TO_QM3)

AMQ8441: Display Cluster Queue Manager details.
CLUSQMGR(QM_5) CLUSTER(CL_MQ51)
CHANNEL(TO_QM5)
130 MQSeries Version 5.1 Administration and Programming Examples

Figure 121. Channels for QM_5

Figure 122. QM_5’s View of Cluster Queue Managers

Now refresh the Services GUI. You will see that the command server is
running. Within a cluster, MQSeries uses PCF (programmable command
format) to communicate with other cluster members. When a queue manager
Chapter 7. MQSeries Administration and Service 131

joins a cluster, MQSeries starts the command server for the new queue
manager automatically.

7.2 Experiments with MQSeries Services

If you follow the exercises described in this section, you will become familiar
with the mode of operation and basic functions of the MQSeries Services
snap-in.

You can open the MQSeries Services window by right-clicking the
icon shown on the right in the task bar. To use MQSeries Services,
you must have the required level of authority.

If the icon is not visible, press
Ctrl+Alt+Del and check which user
you are currently logged in as.
Make sure this user is in the mqm
or Administrator group, or log out
and in again as a user that is.

From the menu, select MQSeries
Services.

The left-hand pane of the MQSeries Services window displays a tree
containing icons for the Alert Monitor, Web Administration server, trace, and
for each of the queue managers on the local machine.
132 MQSeries Version 5.1 Administration and Programming Examples

The right hand pane shows an expanded view of the currently selected item
in the tree. For example, when you select a queue manager, it lists the main
processes defined for it, and their current status, for example the queue
manager itself, listener, channel initiator, trigger monitor, whether they are
running, and whether they are under manual or automatic control.

The view presented in the Services window is dependent on your actual
configuration. It is built from the MQSeries information stored in the Registry.
Usually, it is updated automatically. You cannot tailor the information
displayed in the Services window. This is different from the Explorer, where
you can configure many aspects of its display and, because it can contain so
much more data, you often have to refresh it manually.

The following sections explain how to use the MQSeries Services GUI to
perform the following tasks:

1. How to define that a queue manager starts automatically or manually

2. How to view manipulate queue manager properties using the Registry
Editor and MQ Services

3. How to create a queue manager using MQ Services

4. How to add a trigger monitor

5. How to configure and use the Alert Monitor

7.2.1 Automatic or Manual Start-up
As mentioned before, in MQSeries for Windows NT Version 5.1 the command
scmmqm does not exist any more. You use the MQSeries Services window to
describe what components to start when you boot your system.

In the following scenario, we set QM_1 to start up manually and leave all
others to start automatically.

1. Right-click QM_1 and select Properties from the menu.

2. Click the General tab (if not already displayed).

3. From the list of start up types (shown in Figure 123 on page 134) select
Manual and click OK.

4. You will notice that the MQSeries Services window changed and now
shows Manual under Startup. QM_5 is still running, of course.

5. Now stop all queue managers that are running2. Be patient and watch the
animation.

2 Right-click a queue manager, select All Tasks and then Stop.
Chapter 7. MQSeries Administration and Service 133

Figure 123. Queue Manager Properties

6. Reboot your Windows NT system. Be patient again. It may take a few
minutes.

7. Verify that QM_1 didn’t start and that the other queue managers did.

8. Reboot Windows NT again without stopping any of the MQSeries
components.

You will see again that all but QM_1 are up and running.

Are you impressed with the robustness of MQSeries Version 5.1?

7.2.2 How to Start a Queue Manager Manually
To start a queue manager, say QM_3, manually, right-click the QM_3 icon,
select All Tasks and then Start as shown in Figure 124. Each of the
134 MQSeries Version 5.1 Administration and Programming Examples

processes defined for QM_3 will be started in turn, as displayed in the
animated progress box.

Figure 124. Starting a Queue Manager Manually

7.2.3 Working with Queue Manager Properties
Flip through the dialogue tabs shown in the Properties window in Figure 123
on page 134 and display some of the other Properties panels. Compare the
configurable options in say, the Log Property page, with the MQS.INI and
QM.INI files in MQSeries Version 5.0 or Version 2. You will notice that the
entries look familiar.
Chapter 7. MQSeries Administration and Service 135

Figure 125. MQSeries Registry Entries
136 MQSeries Version 5.1 Administration and Programming Examples

All of the .INI file information has been moved to the Windows NT Registry.
MQSeries Services and Explorer display and enable you to update the
Registry entries for MQSeries.

You can display the MQSeries entries in the Registry using the Windows NT
regedt32 utility. The correspondence between the structures in the Registry
and the MQSeries Services and Explorer displays is fairly obvious.

However, you should use only the Property pages in the Services tabbed
dialogues to update the MQSeries information in the Registry.

If you update the Registry using regedt32 and make a mistake, you can make
Windows NT unstable - you may even destroy it.

Notes:

• To start the Windows NT Registry Editor (regedt32) click the Start button,
select Run, type regedt32 in the text box and press Enter.

• To display the MQSeries Entries in the Windows NT Registry, expand the
following keys in the left-hand window of the regedt32 display:

HKEY_LOCAL_MACHINE
SOFTWARE

IBM
MQSeries

CurrentVersion
Configuration

QueueManager

An example is shown in Figure 125 on page 136.

7.2.4 Creating a Queue Manager from the Services GUI
Yes, you can use MQSeries Services to create a queue manager. Let us
create the queue manager QM_0.

1. In the Services window, right-click IBM MQSeries Services, select New
from the menu and then Queue Manager as shown in Figure 126 on page
138.

2. Type the name QM_0.

3. Check the boxes Start Queue Manager and Create a Server Connection
Channel.

4. Enter a free port, such as 1420.
Chapter 7. MQSeries Administration and Service 137

Figure 126. MQ Services - Creating a Queue Manager

Figure 127. Registry - Queue Manager Objects
138 MQSeries Version 5.1 Administration and Programming Examples

Now you can refresh the regedit display and verify that the new queue
manager appears. An example is given in Figure 127 on page 138.

In the MQ Services window, the new queue manager is added to the bottom
of the list. To display the queue managers in alphabetical order, close and
then restart MQ Services.

7.2.5 Adding a Trigger Monitor
Now let us add a Trigger Monitor to watch the default trigger queue
(SYSTEM.DEFAULT.INITIATION.QUEUE) on QM_0. We will set up the
service to start automatically, and also define the recovery options so that
Windows NT will reboot if the Trigger Monitor fails.

To add a process to the queue manager, or change a process, right-click the
item and select from the menu as shown in Figure 128.

• Here click Trigger Monitor. The Create Trigger Monitor Service dialog
shown in Figure 129 on page 140 appears.

• Choose either Automatic or Manual startup.

• Next, click the Parameters tab shown in Figure 130 on page 140. This is
where you specify the SYSTEM.DEFAULT.INITIATION.QUEUE.

Figure 128. Adding a Trigger Monitor
Chapter 7. MQSeries Administration and Service 139

Figure 129. Create a Trigger Monitor Service - General Tab

Figure 130. Create a Trigger Monitor Service - Parameters Tab
140 MQSeries Version 5.1 Administration and Programming Examples

Figure 131. Create a Trigger Monitor Service - Recovery Tab

Figure 132. Queue Manager with Trigger Monitor
Chapter 7. MQSeries Administration and Service 141

• To specify what to do in case of a failure click the Recovery tab. Here you
have four options to choose from to tell the IBM MQSeries Service what
action to take when a service had been successfully started, but has now
stopped. The choices are:

a. Restart the service (in this case the Trigger Monitor)
Here you can specify a delay (in minutes) if you need to allow time for
the system to settle, for example, to allow for long timeouts in other
applications.

b. Reboot the server (this computer)

c. Run a program
Here you specify the program you want to run and any parameter it
needs.

d. Take no action

• You can start the Trigger Monitor manually by clicking Start in the General
tab.

7.2.6 Using the MQSeries Alert Monitor
You can configure the Alert Monitor to send notifications to any user. These
alerts refer to the failure of a service for which you have configured an action.
For example, if you want MQSeries for Windows NT Services to monitor a
Trigger Monitor, tell someone if it fails, and restart it automatically, right-click
the Trigger Monitor in the Services GUI and set the Recovery property
accordingly. If you have enabled alerts, messages are sent to the appropriate
user when a failure is detected and after the requested recovery has been
carried out.

In this example, we send a notification to the user ID we used to log on when
the Trigger Monitor fails. To accomplish that we have to do two things:

• Configure the Alert Monitor so that the alert message is sent to the right
user ID.

• Configure the Trigger Monitor to perform an action after the service fails. In
this case we will reboot the system. This is probably not what you would
do in the real world, but it demonstrates that the alert function works and
that MQSeries Version 5.1 is robust.

The Alert Monitor uses Windows NT messaging to notify a user when
something drastically goes wrong with the MQSeries operational
configuration. You can update its Property pages to send the messages to
you.
142 MQSeries Version 5.1 Administration and Programming Examples

Figure 133. Configuring the Alert Monitor

Figure 134. Alert Monitor Properties
Chapter 7. MQSeries Administration and Service 143

1. Right-click the Alert Monitor icon and select Properties as shown in
Figure 133 on page 143.

2. Click the Parameters tab to display the panel shown in Figure 134 on
page 143.

3. Mark the check box Send notification to the following user.

4. Enter your user ID in the text box and click OK.

After having configured the Alert Monitor and the Trigger Monitor restart
service, test if the function works. Use the Windows NT Task Manager to kill
the new Trigger Monitor.

Note: To start the Windows NT Task manager right-click an empty portion of
the task bar and select Task Manager from the menu.

In the task list, look for runmqtrm.exe and end the process. It may take a
minute or two for your blatant act of sabotage to be noticed but be patient and
resist the temptation to touch the mouse or the keyboard.

When the system restarts, log in and open the MQSeries Services window.
Give the services time to start up again; it shouldn’t take more than a few
minutes.

Now are you impressed?

7.3 Using MQSeries Control Commands with the New GUIs

When you administer and operate a queue manager configuration using only
the Explorer and Services GUIs, the displays show a consistent view of all the
relevant MQSeries processes and their status. However, if you start
MQSeries processes from the command line, the view presented by the
Services “snap-in” does not correspond exactly with reality. Here are some
examples:

1. The channel initiator, which is automatically started when you use strmqm
to start a Version 5.1 queue manager, doesn't appear in the Services
display.

2. When you start a queue manager using strmqm, an icon appears in the
Services display for a “phantom” command server which does not yet
exist. Starting the command server manually, either from the command
line or through the Services GUI, updates the status of the icon correctly.
144 MQSeries Version 5.1 Administration and Programming Examples

3. The listener for a queue manager started at the command line must be
started and stopped at the command line, and doesn't appear in the
Services display.

These inconsistencies come about because the control commands and the
Services “snap-in” work with different data sources. The control commands
have not been changed to take account of the Services “snap-in”; and the
Services “snap-in” cannot reliably discover the existence, state, or
relationships between all MQSeries processes when they are controlled from
the command line, because the Control Commands do not update the
Registry.

Recommendation: To avoid possible confusion, use either the Services
“snap-in” or control commands to manage MQSeries processes, not both.

However, there is no problem mixing the use of runmqsc-based
administration commands (this includes Web Administration, MQAI, and PCF)
and the MQSeries Explorer, because they all use the same base data source.

Recommendation: Use the Explorer for displaying and making temporary
changes to MQSeries configuration data on Windows NT, but use Web
Administration with scripts for repeatability in production systems and for its
cross-platform support.

7.4 Remote Administration

The MQSeries Explorer can remotely administer the following products:

AIX and UNIX Command level 221 and above

MQWin 2.1 Not supported

OS/400 Command level 320 and above

OS/2 and Windows NT Command level 201 and above

VMS and Tandem Command level 221 and above

It can`t do MQ/390 though.

An important point to be aware of is that both the MQ Explorer and Web
Admin interfaces can only transmit commands that you would in the past have
entered through runmqsc, or the platform equivalent. That is, you can't use
them to create or delete queue managers.

Although the Services GUI allows you to control starting and stopping queue
managers and their associated processes (channel initiators, listeners,
Chapter 7. MQSeries Administration and Service 145

trigger monitors, and the like) that only works within the Windows NT context.
That is, you can't manage a queue manager on an AS/400 from the Windows
NT Services GUI.

In our opinion, it is reasonable to propose remote administration of existing
queue managers, where administration means “looking after the object
definitions”. As long as you can do a remote login, you can also administer
security. And it seems reasonable to consider remote operation in an
Windows NT-only queue manager network. You can do a limited amount of
remote operations of queue managers on non-Windows NT platforms, such
as starting and stopping channels, but full-blown operations in a
heterogeneous multi-platform configuration require more than the MQ
Explorer and MQ Services or Web Admin can deliver.
146 MQSeries Version 5.1 Administration and Programming Examples

Chapter 8. Web Administration

The MQSeries Explorer and Services user interfaces are a huge advance in
ease of use over the DOS prompt used for MQSeries control commands,
such as runmqsc. Attractive as they are, these new interfaces have two key
limitations, namely:

• They are available only on Windows NT.

The new MQSeries Web Administration interface in Version 5.1 uses a
standard Java-enabled browser that can run on any platform supported by
your choice of browser.

• They operate only in interactive mode.

MQSeries Web Administration includes a scripting and script management
facility that enables you to construct scripts, which may include complex
logic11. You can store the scripts in a public or private library from which
they can be invoked interactively, or called from within other MQSeries
Web Administration scripts.

Web Administration uses runmqsc “under the covers”. Therefore, any
operations that are valid in runmqsc will also work in Web Administration.

An important point to be aware of is that both the MQSeries Explorer and the
MQSeries Web Administration interfaces can only transmit commands that
you would in the past have entered through runmqsc, or the platform
equivalent. That is, you can’t use them to create or delete queue managers.

Although the MQSeries Services GUI allows you to control starting and
stopping queue managers and their associated processes, such as channel
initiator, listener and trigger monitor, that only works in Windows NT. This
means that you can’t manage a queue manager on an AS/400 from the
MQServices GUI. Here remote administration means administration of
existing queue managers, that is, looking after object definitions.

The configuration in Figure 135 on page 148 shows clients attached to a Web
Administration Server running on a Windows NT machine. This machine
hosts queue managers of which one must be a default queue manager. Using
the default queue manager, you can administer remote queue managers that
run either in the same or different machines.

1 You can use the new -w parameter option on the endmam command to delay a script until a queue manager has stopped,
but doesn’t wait until the registry has been updated. A dltmqm command following endmqm -wwill fail if the registry update
hasn’t had enough time to “catch up”.
© Copyright IBM Corp. 1999 147

Figure 135. Web Administration Architecture

8.1 Enabling Web Administration

To enable MQSeries Web Administration, you need the following:

• An active user ID with authority to log in to the Web Administration Server,
and on each machine that hosts queue managers that you want to
administer. That is, your user ID should belong to the mqm security group,
and be known globally.

• A Java-enabled Web browser, such as Netscape Navigator 4.04 with the
Java AWT upgrade, or Microsoft Internet Explorer Version 4.01 (SP1) on
your local machine.

• An MQSeries Web Administration Server installed on a Windows NT
machine, either local to your browser or accessible to it across the
network. This requires a custom installation of MQSeries.

• The Web Administration Server must be running on a dedicated IP port.

• Channel connections from the default queue manager on the machine
where the Administration Server is running to queue managers on other
machines that you want to administer remotely.

• A default queue manager on the Administration Server machine.

Web
Browser

Client

Web
Browser

Client

Web
Browser

Client

MQSeries
Server

MQSeries
Server

Web Admin
Server

Windows NT

MQ Server

Remote
Queue

Managers

Local Queue Managers
Windows NT Event Log
Scripts
MQ Trace and FFST

MQSC commands

MQSC commands
and scripts
148 MQSeries Version 5.1 Administration and Programming Examples

The following describes how to log in to the Web Administration, to find out
which queue managers are available to you, and to how to execute runmqsc

commands.

8.2 Logging in

Log on to Windows NT as a user who is a member of the mqm or
Administrators security group. If you log on as a user that is not a member of
one of those groups, you get this error message: The selected file is not a

Microsoft Management Console document.

Then open an MQSeries Services window, and check the current status of
the Web Administration server. Start it, if necessary. Figure 136 shows that
the Web Administration server is running and the default port is uses, 8081.

Start your Web browser using the URL that points to the MQSeries Web
Administration Server: http://hostname:8081, where hostname is the name of
the NT server machine that hosts the MQSeries Web Administration Server,
8081 is the default port that the Web Administration Server listens on.

The Web Administration Server can be on your local machine or on another
machine that can be addressed over a TCP/IP connection. If the server is
remote, the following conditions must be met:

Figure 136. MQSeries Services - Web Administration

• The MQSeries Web Administration Server must be running there.
Chapter 8. Web Administration 149

• hostname must be accessible. Use ping hostname at a command prompt to
verify this.

• You need to be properly authorized on that machine, too.

The Web Administration Interface is implemented using Java. Be patient
while the Java virtual machine is started and the code downloaded and
initialized. Figure 137 shows the Web Administration in the Microsoft Internet
Explorer.

Figure 137. Web Administration Server

The Web Administration Interface comprises three distinct areas:

1. The left-hand pane lists the two available options, Introduction and Logon.

2. At the top of the right-hand pane you see the status of the Interface
(Ready), and your current relationship with it (no user logged on).
150 MQSeries Version 5.1 Administration and Programming Examples

3. The lower part of the right-hand pane contains the introduction. Selecting
a hypertext link takes you into the comprehensive documentation built into
the interface itself.

Click the Logon button in the left-hand pane.

When prompted in the lower right-hand pane, log in to Web Administration.

The user name you enter here must be in the mqm or Administrators group on
the machine (or machines) that host the queue manager(s) that you want to
administer, because you need the same level of authorization as you would
need to use runmqsc. It need not be the same as the one you used to log on
to Windows NT.

8.3 Getting Help

When you are working with the Web Interface and need help with the script
language and management functions, open a second instance of the Web
Administration browser and refer to the introduction. There is very little
information about the practical aspects of scripting in the MQSeries
Information Center.

Web Administration understands two types of commands:

1. MQSC commands

You find them in the online help under Commands when you click “?” in the
top right-hand side in the window.

2. Script statements

From the script management help, select How do I? and then the link
script language. The script statements are:

- CALL
- ECHO
- EXIT
- FOR-IN-ENDFOR
- IF-ELSE-ELSEIF-ENDIF
- LIST
- RUN
- SELECT
- SET

For detailed information, refer to the online documentation.
Chapter 8. Web Administration 151

8.4 Using Commands

Figure 138. Web Administration

After logging on, you are presented with a window as shown in Figure 138.
Notice the two data entry fields labelled “Select a queue manager” and “Enter
a command”. Each is paired with a list box. If you don't populate the first text
box with a queue manager name, the default queue manager will be selected
automatically.

Note: If you have not defined one of the queue managers as the default, your
commands will fail.

You can enter any valid queue manager name in the first text box; you should
also be able to pick a local one from the list box. You may try to enter a
simple MQSeries command in the second text box, for example, dis qmgr.
Then press Enter or click the Run button.

Select queue manager
Enter a command

Output will appear in this box
152 MQSeries Version 5.1 Administration and Programming Examples

Figure 139. Web Administration - Using Commands

The results should be displayed in the command output area, as shown in
Figure 139.

If you have access to a remote queue manager, enter its name in the Select
queue manager text box and execute the command again. Your command
was saved in the list box so you don't need to enter it again. Notice that, if the
remote queue manager selection is valid, its name is added to the first list box
so you can recall it later.

When you have finished with Web Administration, select the Logoff button in
the left-hand navigation pane, and then press Enter or select the Logoff
button in the lower right-hand pane.
Chapter 8. Web Administration 153

8.5 Using Scripts

In this example, we will build a script that defines a second cluster queue,
CLQ_2, in cluster CL_MQ51. We will call this script from an “outer script” that
installs an instance of the new queue in each of the queue managers QM_1,
QM_2, and QM_3.

If not already done so, log on to Web Administration and select the Script
Management option in the left-hand navigation pane.

Figure 140. Web Administration - Script Management
154 MQSeries Version 5.1 Administration and Programming Examples

When the Edit script pane opens, click New on the bottom of the pane, and
name the inner script, for example, Set up CLQ_2. This example is shown in
Figure 140 on page 154. Then click OK and the Select script window
disappears.

In the Edit script window, enter the command to create the cluster queue
CLQ_2:

define ql(CLQ_2) cluster(CL_MQ51) replace

Now save the script by clicking Save on the bottom of the pane. By default, it
will be created as a Public script. If you wish, you may choose to save it as
Private instead.

Now create and save the outer script “Install CLQ_2 in CL_MQ51” that will
call your first script once for each of the three queue managers QM_1, QM_2,
and QM-3. You can include a display command at the end of your script to
verify that your commands had the intended results.

If you saved your inner script as Private, remember this when coding the call
statements in the outer script. The outer script is shown in Figure 141.

Figure 141. Web Administration - Outer Script

* set all the output options ON so you can see what’s happening

list all

select qmlocal(QM_1)
call public ‘Set up CLQ_2’

select qmlocal(QM_2)
call public ‘Set up CLQ_2’

select qmremote(QM_3)
call public ‘Set up CLQ_2’

* check that CLQ_2 ended up where you intended

dis qcluster(CLQ_2) cluster clusqmgr
Chapter 8. Web Administration 155

Now click Administration in the left-hand pane and run your outer script. The
command is:

call public ‘Install CLQ_2 in CL_MQ51’
156 MQSeries Version 5.1 Administration and Programming Examples

Figure 142. Web Administration - Verify Cluster Traffic

Figure 142 shows the configuration developed and used in the previous
chapters. To verify that this cluster works properly you can run two tests.

1. Use a program such as amqsput or amqsgen (see page 161) to pump
messages to CLQ_2 from QM_1 and use Web Administration to check
where the messages actually go.

2. Stop the program and restart it at QM_4. Then track the message traffic
again.

Why are the traffic patterns different?

QM_1 owns an instance of CLQ_2 and therefore all messages are put into
this local queue. QM_4 on the other hand does not have an instance of
CLQ_2. Therefore the messages are distributed to the three instances on the
other three queue managers.

QM_1

QM_4 QM_3

QM_2

TO_QM3
CLUSRCVR

(1417)

TO_QM2
CLUSRCVR

(1416)

TO_QM4
CLUSRCVR

(1418)

TO_QM1
CLUSRCVR

(1415)

TO_QM3
CLUSSDR

TO_QM3
CLUSSDR

TO_QM1
CLUSSDR

TO_QM1
CLUSSDR

CLQ_2

CLQ_2

CLQ_2
amqsgen (1)

amqsgen (2)

CL_MQ51

REPOS

REPOS
Chapter 8. Web Administration 157

158 MQSeries Version 5.1 Administration and Programming Examples

Chapter 9. Using the Performance Monitor

The Performance Monitor is a standard component of Windows NT. It enables
you to select and display a variety of data about the performance of the
Windows environment, as tabular reports or graphs. You can use it to monitor
the depth of messages on MQSeries queues, and the rates of message
arrival and removal.

You access the Performance Monitor from the Start menu: Programs,
Administrative Tools (Common), Performance Monitor.

When you first start it, the display is empty. To add a resource that you want
to monitor, select Edit and then Add to Chart.

Figure 143. Performance Monitor - Setup
© Copyright IBM Corp. 1999 159

In the Add to Chart window shown in Figure 143 on page 159, select
MQSeries Queues from the list of objects.

Next, choose what you want to monitor:

1. The current queue depth, that is, how many messages are in the queue.

2. The queue depths as a percentage of the maximum queue depth, that is,
how full the queue is.

3. The enqueue rate in messages per second, that is, the number of
messages placed in the queue. This is not necessarily the number of
MQPUTs; each message segment counts as one message.

4. The dequeue rate in messages per second, that is, the number of
messages removed from the queue.

Then select a queue from the instance list. The instance list contains only
queues that have had messages inserted or removed before the Performance
Monitor started.

Note: All counters are installed in the Windows NT registry.

As an example, we will use the Windows NT Performance Monitor to track the
rate of message flow to multiple instances of a queue across a cluster and
observe how the traffic flow changes when a queue manager (or queue
instance) drops out of the cluster and rejoins it.

9.1 Example 1: Track Cluster Queues

The objective is to use the Windows NT Performance Monitor to track the
activity on the instances of the cluster queue, CLQ_ACROSS_2_3_4, on
queue managers, QM_2, QM_3, and QM_4.

To do this we use the configuration built in Chapter 4, “Creating a Cluster with
the MQExplorer” on page 55. Before we start, use the MQSeries Explorer to
check that the configuration is up and running, and that the cluster queue
instances are accessible from QM_1. The Explorer window should contain
the information you see in Figure 144 on page 161.

Note: If you don’t see the queue instances in the Performance Monitor, use
amqsput or any other program to put a message into them.

Use the modified sample application amqsgen to generate message traffic on
QM_1 destined for the cluster queue CLQ_1. This GUI is shown in Figure 145
on page 161.
160 MQSeries Version 5.1 Administration and Programming Examples

Figure 144. Accessible Cluster Queues

Figure 145. Put Message Sample - amqsgen
Chapter 9. Using the Performance Monitor 161

The program amqsgen is a modified sample program written in Visual Basic
and is supplied with this book. You use it this way:

1. Type the queue manager name (here QM_1) and click Connect.

2. Type the queue name (here CLQ_ACROSS_2_3_4) and click Open.

3. You may modify the time interval to put messages in the queue. The
default is set to one message per second.

4. Click Start to begin putting messages. The program generates messages
as shown in Figure 145 on page 161.

5. Click Stop to end putting messages.

6. To end the program click Close and then Disconnect.

Note: If you use the configuration you created in the earlier chapters, make
sure that you use CLQ_ACROSS_2_3_4 and not CLQ_1. Since QM_1 also
owns an instance of this queue, all messages would be put into that one.

If you use the defaults of the Performance Monitor and amqsgen, you will see
a flat line on the bottom in the Performance Monitor window, as shown in
Figure 145. You distribute messages ata rate of one per second over the
three queues and display them in the chart using the default of .1 messages.
You can use the MQSeries Explorer to verify that messages are really put in
all three queues. Expand each queue manager, click Queues, right-click the
local instance of CLQ_ACROSS_2_3_4 and then select Browse Messages
from the menu.

To get a better graph in the Performance Monitor, adjust the scaling factor of
each of the graphs. Select an instance at the bottom of the graph as you see
in Figure 146. Then click Edit, choose Edit Chart Line and set Scale to 1.0
as shown in Figure 147 on page 163. You can see that the curves now give a
better view.

Figure 146. Performance Monitor - Counters
162 MQSeries Version 5.1 Administration and Programming Examples

Figure 147. Performance Monitor - Scale Factor

Once you have all three cluster queue instance added and being displayed,
drain the queues and reset the Performance Monitor display using the Clear
Display command from the Edit menu. You can use the amqsget sample
program to empty each of the queues. The commands are:

amqsget CLQ_ACROSS_2_3_4 QM_2
amqsget CLQ_ACROSS_2_3_4 QM_3
amqsget CLQ_ACROSS_2_3_4 QM_4

You may also change the vertical optimum, for example, to 50. Click Options
and then Chart. Figure 148 on page 164 shows the output.
Chapter 9. Using the Performance Monitor 163

Figure 148. Performance Monitor - Chart Showing Current Queue Depth

9.2 Example 2: Check Cluster Behavior

Now we use the Performance Monitor to observe what happens when a
cluster queue instance becomes inaccessible and when it rejoins the cluster.

We use amqsgen to distribute messages to CLQ_ACROSS_2_3_4. The
Performance Monitor shows curves as shown in Figure 148. Then we
interrupt the flow of messages to one of the cluster queue instances. There
are various methods you might try to simulate different kinds of situations, for
example:

• Set the queue to Put Disabled.
• Stop the receiver channel.
• Suspend the queue manager.
• Terminate the queue manager that owns the queue.
164 MQSeries Version 5.1 Administration and Programming Examples

The chart below shows when one queue manager was suspended and when
it resumed its work.

Figure 149. Performance Monitor - Interrupted Message Flow
Chapter 9. Using the Performance Monitor 165

166 MQSeries Version 5.1 Administration and Programming Examples

Chapter 10. File Transfer Programs

Although there are usually better ways of solving application problems than
by using MQSeries as a file transfer mechanism, the realities of deadlines
and schedules often mean that file transfer-based solutions must be put in
place in the short to medium term.

The programs described here (or ones very like them) were created in
response to such requirements.

Originally the programs were based on MQSeries Version 5.0 and were
therefore able to make use of Version 5 features such as message
segmentation and message groups. As it often happens, however, it was
discovered that some of the MQSeries servers would in fact be Version 2 type
servers.

A number of solutions were considered as a result of the Version 2
compatibility requirement. In the end, the mechanism shown here was used.
It uses only Version 2 features. What this means is that we have to implement
our own (application-specific) way of "grouping" the messages that make up a
single file, of "ordering" them properly during re-assembly at the receiving
end, and of indicating the END-OF-FILE condition.

This chapter will guide you through the simple design of the solution that was
used.

The text that follows assumes that you can read C code and that you have at
least browsed some of the C based sample code that comes with MQSeries.

The files we will explore are as follows:

mqfm_defs.h A header file that contains some handy values that are shared
among the other files.

putMsg.c A very simple program that allows us to create MQSeries
messages whose contents is the text of the parameters on the
command line of putMsg.

putFile.c The program that chops up files into messages and sends
them.

getFile.c The program that reassembles files from messages sent by
putFile.
© Copyright IBM Corp. 1999 167

We will walk through the code simply by annotating the C code itself with
footnotes. The source code for the programs themselves are available on the
diskette at the back of the book.

10.1 Design

The key programs are putFile and getFile. Each of these programs can be run
either from the command line, or as MQSeries triggered programs. You will
see comments (footnotes) below the code pointing out the differences.

10.1.1 putFile
This program chops the source file into chunks of a standard size1. It turns
the chunks into a series of MQ message with the following characteristics:

Table 8. MQSeries Message Header Values for File Transfer Messages

As you can see, we allow MQSeries to allocate a unique MsgID on the header
message only. We then reuse that MsgID for all messages in the group for
transfer of a particular file. Meanwhile, we use the CorrelID as a "counter" for
the file chunks. The CorrelID zero message (000000000000000000000000)
is the header. It contains no file data.

The header message does contain the filename of the file being transferred
and optionally, a destination directory (which, if present, will override the
default destination directory at the receiving end).

The header message communicates three pieces of data.

• The unique MsgID for the new file transfer (which is in the MQ header).

• The filename and destination directory (in the data portion of the header
message), as follows:

FILENAME=<filename> DESTDIR=<destination directory>

1 MQFM_MESSAGE_SIZE in mqfm_defs.h. Default value is 5000 bytes.

Message MsgId CorrelId

First (header) Allocated by MQSeries '000000000000000000000000'

nth (2nd to last - 1) Same as header n left padded with zeroes

Last Same as header '999999999999999999999999'
168 MQSeries Version 5.1 Administration and Programming Examples

10.1.2 getFile
This program uses the following logic to reassemble the messages (as above)
into files:

1. Do an MQGET with CorrelID '"00000000000000000000000". This will
certainly find the next header message, with a new MsgID <OurMsgid> for
us and no data.

2. Do an MQGET with MsgID <OurMsgid>. We are thus getting the next
sequential message with MsgID of <OurMsgid>. This assumes FIFO
queue processing. We then check that the CorrelID is the correct CorrelID
for the next chunk of the file we are expecting.2

3. Repeat step 2 until CorrelID = "999999999999999999999999". This
indicates that the current message is the final piece of the file.

4. Write the message out to DestinationDirectory / filename where:

- filename arrived in the data portion of the file's header message.

- DestinationDirectory defaults to the value of "UserData" in the
PROCESS definition of the triggered process on the receiver, unless it
has been overridden by a DestDir value arriving in the data portion of
the file's header message.

10.2 Input Parameters

Obviously both putFile and getFile need to know the names of objects, such
as files and queues in order to do their job. As indicated earlier, the programs
can be initiated from the command line or started as MQSeries triggered
programs.

As you read the following code, Table 9 on page 170 may help you to keep
track of where each of the programs finds these parameters. The headings
indicate how putFile and getFile are started, either from the command line or
triggered. The row titles on the left show where to specify the various
parameters the programs need.

2 Note that better logic would be to SPECIFY both a MsgID of <OurMsgid> and the CorrelID we require next. This would
get MQ to fully manage the reordering of files at the receiver. The only problem with such a change would be that
whereas currently we do not need to know which is the LAST chunk, in such a revised algorithm we would. Currently we
know the last chuck has arrived when we see a CorrelID of "999999999999999999999999". The revised program would
have to request the last chunk by CorrelID.
Perhaps you would like to revise the program. Could you put the number of chunks (messages) for the complete file in
the header message?
Chapter 10. File Transfer Programs 169

Table 9. Source of Input Parameters for getFile and putFile

putFile getFile

Command Line Triggered Command Line Triggered

Queue Manager Default Default Default Default

Instruction Message
Queuea

a. The queue from which an Instruction Message can be read.

Trigger Message

Transferred
File’s Queueb

b. The queue to which the file chunks are written (putFile) or from which the file chunks are read
(getFile).

Command Line
Instruction
Message

Command Line
Triggered
Message

Directory of Filec

c. That is, the <directory> portion of the fully qualified pathname of the file being transferred.

Possible part of
FILEd

d. The code would need to be changed to allow directory names as part of filenames, but this could
easily be done. That is to say, we would qualify <filename>, with a <directory> component. So
<filename> might be "c:\directory\file". The code just before footnote 31 on page 185 is where we
currently prevent this option.

Instruction
Message

Header Message
or
part of FILE
(see footnote d)

Trigger Messagee

unless
overridden by
Header Message

e. This is transferred from the UserData attribute of the PROCESS statement of the triggered process.

Name of Filef

f. The <filename> portion of the fully qualified pathname of the file being transferred.

Command Line
Instruction
Message

Header Message
unless
overridden by
Command line
(optional)

Header Message
only

Destination
Directoryg

g. The <directory> portion of the fully qualified pathname of the file being transferred AS IT WILL
BE AT THE RECEIVING SIDE. Obviously, we cannot assume the same directory structure at
both ends. If it is specified, it travels in the Header Message.

Command Line
(optional)h

h. Placed in the Header Message IF it is specified.

Instruction
Message
(optional)i

i. Same as footnote h.
170 MQSeries Version 5.1 Administration and Programming Examples

10.3 Message Types

The File Transfer application uses quite a few message types. This section is
a summary of the terms we have used and definitions of the message types.
We list them in roughly the logical order in which they would be created
during the file transfer process.

Note that Header Message, Data Message, Trailer Message, and Instruction
Message are defined by the File Transfer application. Trigger Message on the
other hand is a standard MQSeries object.

10.3.1 Header Message
This is created by putFile and contains an MQ-generated MsgID that is to be
the message ID for all the chunks of this particular file. The CorrelID is
"000000000000000000000000".

A Header Message is of the form:
FILENAME=<file> DESTDIR=<destdir>

Note: The "<>" characters, are of course not included. Also, the DESTDIR is
optional. That is to say the message is valid if it does not contain a DESTDIR.

10.3.2 Data Message
This is created by putFile and carries the data of the file transfer.

It has MsgID equal to the MsgID in the Header Message. The Nth Data
Message for an individual file transfer has CorrelID of <N left padded to 24
char with zeroes>. It carries file data of MQFM_MESSAGE_SIZE (which, by
default, in mqfm_defs.h, is 5000 bytes).

10.3.3 Trailer Message
This is created by putFile as the last of the data messages. It has MsgID
equal to the MsgID in the Header Message. It has CorrelID of
"999999999999999999999999". It carries file data of less than or equal to
MQFM_MESSAGE_SIZE (which, by default, in mqfm_defs.h, is 5000 bytes).

10.3.4 Instruction Message
This can be created by any means. You could use putMsg, which just makes
a message from its input command line parameters. The Instruction message
should land on a triggered queue. The triggered queue should be set up to
trigger a process that would (for our purposes) be getFile. When the
Instruction Message lands on the triggered queue, the local queue manager
Chapter 10. File Transfer Programs 171

automatically creates a Trigger Message whose contents is made available to
the triggered program (getFile, in our case). If this is all a mystery to you, you
need to read Section 14.1 "What is Triggering?" in MQSeries Application
Programming Guide, SC33-0807.

An Instruction Message is of the form:
FILENAME=<file> QUEUENAME=<queue> DIRECTORY=<dir> DESTDIR=<destdir>

Note: The "<>" characters, are of course not included. Also, the DESTDIR is
optional. That is to say the message is valid if it does not contain a DESTDIR.

10.3.5 Trigger Message
This message is created automatically when a message arrives on a
triggered queue. In the File Transfer application we use the Trigger Message
to carry the UserData field of the PROCESS definition to the triggered
application (getFile). We use UserDate to carry the default "dropoffDirectory"
on the receiving side. Refer to footnote e in Table 9 on page 170.
172 MQSeries Version 5.1 Administration and Programming Examples

10.4 mqfm_defs.h3

#define MQFM_MESSAGE_SIZE 50004

#define MQFM_MAX_FILENAME 200
#define MQFM_FILENAME_EYECATCHER "FILENAME="5

#define MQFM_DIR_EYECATCHER "DIRECTORY="
#define MQFM_DESTDIR_EYECATCHER "DESTDIR="
#define MQFM_QUEUE_EYECATCHER "QUEUENAME="
#define MQFM_TRIGM_USERD_EYECATCHER ":::<-DIR"6

#define MQFM_INSTRUCTION_MESSAGE_SIZE 2007

#define MQFM_MAX_DIRECTORY 200
#define MQFM_FIRSTMSG_FLAG "000000000000000000000000"8

#define MQFM_LASTMSG_FLAG "999999999999999999999999"

#if !defined(TRUE)
#define TRUE 1

#endif
#if !defined(FALSE)

#define FALSE 0
#endif

3 This file contains definitions shared among the programs.
4 This is the chunk size we will use as we turn files into messages, here 5000 byte messages.
5 These programs make use of control or "instruction" messages in order to know about queues, directories, filenames

etc. These are the definitions of the eyecatchers we use to sift out the various "instructions".
6 This eyecatcher matches a definition on the receiving server which looks like this:

* define the process for triggered data queue

define process(HP.GETFILE.PROCESS) +
descr('process for getting files from queue') +
appltype(UNIX) +
applicid('/dda/getFile3') +
userdata('/ddaHPtest:::<-DIR') +
replace

The purpose of the ":::<-DIR" is to make absolutely sure that we would not pick up any trailing garbage characters in the
userdata field.
This userdata is what ends up in the trigger message as the dropoffDirectory. See Table 9 on page 170 and footnote 54
on page 194.

7 We won't create instruction messages (see footnote 5 above) larger than this.
8 Because we have restricted ourselves to MQSeries V2 function we need a “home-grown” method of ordering the

messages which represent any one file. We use these two values in the CorrelId of our file transfer messages in order
to ensure we can identify first and last messages of our logical "message group".
Chapter 10. File Transfer Programs 173

10.5 putMsg.c9

/*
**
* NAME: putMsg.c - write msg data to specified MQ queue
*
* SYNOPSIS:
* #include <mqfm_defs.h>
*
* DESCRIPTION: putMsg <queueName> <msgData>
*
* NB: This application assumes it will use the default queue manager.
* Therefore, the queue manager on the machine running this application
* must have been defined with the -q option, i.e.
* crtmqm -q <queue manager name>
*
**
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cmqc.h>
#include <mqfm_defs.h>

int main(int argc, char **argv)
{

char msgData[sizeof(MQFM_FILENAME_EYECATCHER) + MQFM_MAX_FILENAME +
sizeof(MQFM_QUEUE_EYECATCHER) + 48 +
sizeof(MQFM_DIR_EYECATCHER) + MQFM_MAX_DIRECTORY], 10

queueName; / target queue name */
/* various MQI structures needed */ 11

MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

MQHCONN hCon; /* connection handle */
MQLONG compCode; /* completion code */
MQLONG reason; /* reason code */

9 We use this program to create the "Instruction Messages" (see footnote 5). This program simply creates a small MQ
message from its command-line parameters (see specifically, the msgData in the comments at the top of the program).

10 We allocate the msgData array to be large enough to contain all the fields we might want to put in there. (Tidy
programmers might like to change the literal "48" to something like MQFM_MAX_QUEUE and retrieve its value from
the mqfm_defs.h file.)

11 A lot of this is just standard MQ stuff, so we won't comment on it.
174 MQSeries Version 5.1 Administration and Programming Examples

MQHOBJ Hobj; /* object handle */
MQLONG openOptions; /* MQOPEN options */
int i;

printf("%s program running\n", argv[0]);
if (argc < 3)
{

printf("Required parameter(s) missing\n");
printf("Usage: %s <queueName> <msgData>\n", argv[0]);
exit(1);

}

/* extract input parameters for convenience */
queueName = argv[1];

/* build message data by concatenating all subsequent parms */ 12

msgData[0] = '\0';
for (i=2; i<argc; i++)
{

strcat(msgData, argv[i]);
strcat(msgData, " ");

}
printf("msgData value is '%s'\n", msgData);

/****************************/ 13

/* Connect to queue manager */
/****************************/
MQCONN "", /* default queue manager */

&hCon, /* connection handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCONN failed with reason code %ld\n", reason);
exit(1);

}

/*********************************/
/* Open the target message queue */
/*********************************/
strncpy(od.ObjectName, queueName, (size_t)MQ_Q_NAME_LENGTH);

12 All command line parameters after the first one (queueName) we are going to treat as elements of the message
(including the spaces between the parameters).

13 The remainder of this program is standard MQ coding as found in the sample programs. If its flow is not clear to you,
then you need to read through some of the earlier examples in this book.
Chapter 10. File Transfer Programs 175

printf("target queue is %s\n", od.ObjectName);
openOptions = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(hCon, /* connection handle */

&od, /* object descriptor for queue */
openOptions, /* open options */
&Hobj, /* object handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQOPEN failed with reason code %ld\n",reason);
exit(1);

}

/* set message format to STRING */
memcpy(md.Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

/* make sure we get new message and correl ids allocated */
memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId));
memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId));

/* finally, put the message on queue */
MQPUT(hCon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* put options */
strlen(msgData), /* buffer length */
msgData, /* segment buffer */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQPUT failed with reason code %ld\n",reason);
exit(1);

}

/**************************/
/* Close the target queue */
/**************************/
MQCLOSE(hCon, /* connection handle */

&Hobj, /* object handle */
0, /* close options */
&compCode, /* completion code */
&reason); /* reason code */
176 MQSeries Version 5.1 Administration and Programming Examples

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCLOSE failed with reason code %ld\n", reason);
}

/*********************************/
/* Disconnect from queue manager */
/*********************************/
MQDISC(&hCon, /* connection handle */

&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQDISC failed with reason code %ld\n", reason);
}

/* dump out some stats */
printf("\n");
printf("Input msgData: %s\t\t\n"

"Output queue: %s\t\t\n",
msgData, queueName);

return(0);
}

Chapter 10. File Transfer Programs 177

10.6 putFile.c

/*
**
* NAME: putFile.c - read specified file into one or more messages and
* write to nominated MQ queue as segmented message. 14

* SYNOPSIS:
* #include <mqfm_defs.h>
*
* DESCRIPTION: putFile <queueName> <fileName> <destDir>
*
* NB: This application assumes it will use the default queue manager.
* Therefore, the queue manager on the machine running this application
* must have been defined with the -q option, i.e.
* crtmqm -q <queue manager name>
**
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cmqc.h>
#include <mqfm_defs.h>

int main(int argc, char **argv)
{

FILE *inFile; /* input file handle */

char fileNameBuffer[MQFM_MAX_FILENAME + 15

sizeof(MQFM_FILENAME_EYECATCHER) + 1],
readBuffer[MQFM_MESSAGE_SIZE], /* our message buffer */
instructionMessage[MQFM_INSTRUCTION_MESSAGE_SIZE],
fileName, / source file name */
directoryName = NULL, / source file directory name */
inputQueueName, / input queue name */
*chPos,
queueName, / target queue name */
destDir = NULL; / optional dest directory in message */
int bytesRead, /* bytes read from input file */
totalBytesRead;

14 Originally this program used V5 style segmented messages. The current version uses only V2 function. This means we
have to write more code but it means we can run across any of the commonly installed MQSeries platforms.

15 These three lines once again use definitions from our mqfm_defs.h header file.
178 MQSeries Version 5.1 Administration and Programming Examples

/* various MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQOD od_original = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md_original = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN hCon; /* connection handle */
MQLONG compCode; /* completion code */
MQLONG messageLength; /* returned message length */
MQLONG reason; /* reason code */

MQHOBJ hObj; /* object handle */
MQHOBJ hObj_Input; /* object handle */
MQLONG openOptions; /* MQOPEN options */
MQTM *triggerMsgP; /* trigger message */

int triggeredProcess = FALSE;
int messageCount;
int msgSeqNo;
char msgSeqNoText[25];
char savedMsgId[25];

printf("%s program running\n", argv[0]);

if (argc < 2) 16

{
printf("Required parameter(s) missing\n");
printf("Usage: %s <queueName> <fileName> [<destDir>]\n", argv[0]);
exit(1);

}
/* have we been triggered? */

if (argc == 2)
{

if (!(memcmp(argv[1], "TMC ", 4))) 17

{
triggeredProcess = TRUE;

16 This is a fairly standard way of checking that the parameters passed to the program are as we expect. You have
probably seen such processing numerous times before.

17 Why are we comparing one of the parameters passed to us with the literal "TMC "? For a full explanation, see the
MQSeries Application Programming Guide, SC33-0807-09, Section 14.6.3 “MQSeries for OS/2 Warp, Digital
OpenVMS, Tandem NSK, UNIX systems, and Windows NT trigger monitors”. More specifically, see the MQSeries
Application Programming Reference, SC33-1673-05, Section 6.1.157 “MQTMC_* (Trigger message character format
structure identifier)”.
This comparison is made because (if we are triggered) we are being passed the MQTMC2 structure. The first field in
MQTMC2 is "StrucId" (MQCHAR4) and its value is "TMC ".
Chapter 10. File Transfer Programs 179

}
else
{

printf("memcmp failed\n");
}

}

if (triggeredProcess)
{

/* map parameter to trigger message structure */
triggerMsgP = (MQTM *)argv[1];
inputQueueName = triggerMsgP->QName; 18

}

else 19

{
if (argc < 3)
{

printf("Required parameter(s) missing\n");
printf("Usage: %s <queueName> <fileName> [<destDir>]\n", argv[0]);
exit(1);

}
if (argc == 4)
{

destDir = argv[3];
}
queueName = argv[1];
fileName = argv[2];

}

/****************************/
/* Connect to queue manager */
/****************************/
MQCONN("", /* default queue manager */

&hCon, /* connection handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCONN failed with reason code %ld\n",reason);
exit(1);

18 If we were triggered, then we get the inputQueueName from the Qname field of the MQTMC2 structure we were
passed. If you don't understand the (MQTM *)argv[1] or the triggerMsgP->QName constructs, you really need to
consult a good book on the "C" programming language.

19 If we were not triggered, then we just process the command-line parameters we expect. See the header of this program
(putFile <queueName> <fileName> <destDir>)
180 MQSeries Version 5.1 Administration and Programming Examples

}

/* open our input queue and instruction message */
if (triggeredProcess)
{ 20

/**************************************/
/* Open the instruction message queue */
/**************************************/

strncpy(od.ObjectName, inputQueueName, (size_t)MQ_Q_NAME_LENGTH);
printf("input queue is %s\n", od.ObjectName);
openOptions = MQOO_INPUT_AS_Q_DEF /* open queue for input */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(hCon, /* connection handle */

&od, /* object descriptor for queue */
openOptions, /* open options */
&hObj_Input, /* object handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{
fprintf(stderr, "Failed to open inpu t queue\n");
fprintf(stderr, "MQOPEN failed with reason code %ld\n", reason);
exit(1);

}

fprintf(stderr, "input queue opened\n");

/***/
/* get the instruction message containing the file name and q name */
/***/
gmo.Options = MQGMO_NO_WAIT /* expect message to be there */

+ MQGMO_SYNCPOINT; /* take msgs off under uow */

MQGET(hCon, /* connection handle */
hObj_Input, /* object handle
&md, /* message descriptor */
&gmo, /* get message options */
(MQLONG)MQFM_INSTRUCTION_MESSAGE_SIZE, /*size of receive buffer */
instructionMessage, /* message buffer */
&messageLength, /* returned message length */

20 All of the code in this block (until footnote 21 on page 183) is executed only if we are triggered. It is designed to process
an instruction message (of the type we might have sent with the putMsg.c program).
We won't comment any further on this block of code. If you want to try putFile.c in the triggered mode, you will need to
read this block carefully in order to understand how to create the instruction message with putMsg.c.
Chapter 10. File Transfer Programs 181

&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{
fprintf(stderr, "MQGET failed with reason code %ld\n", reason);
exit (1);

}

/* check that message is in format we expect */
if (strncmp(instructionMessage, MQFM_FILENAME_EYECATCHER,

strlen(MQFM_FILENAME_EYECATCHER)))
{
fprintf(stderr, "Instruction message does not contain file name\n");
exit(1);

}

queueName = strstr(instructionMessage, MQFM_QUEUE_EYECATCHER);
if (!queueName)

{
fprintf(stderr, "Instruction message does not contain queue "

"name\n");
exit(1);

}

directoryName = strstr(instructionMessage, MQFM_DIR_EYECATCHER);
if (!directoryName)

{
fprintf(stderr, "Instruction message does not contain directory "

"name\n");
exit(1);

}
destDir = strstr(instructionMessage, MQFM_DESTDIR_EYECATCHER);

/* extract file, directory and queue name */
/*
* format of instruction message we expect is
*
* FILENAME=xxxxxxx QUEUENAME=yyyyyyy DIRECTORY=zzzzzzzz DESTDIR=wwwwwwww
*
*/
fileName = instructionMessage+strlen(MQFM_FILENAME_EYECATCHER);
(queueName-1) = '\0'; / replace blank with string terminator */
fprintf(stderr, "extracted file name is '%s'\n", fileName);

queueName += strlen(MQFM_QUEUE_EYECATCHER);
182 MQSeries Version 5.1 Administration and Programming Examples

/* add terminator which removes any trailing blanks */
for (chPos=queueName; *chPos; chPos++)

{
if (*chPos == ' ')

{
*chPos = '\0';
break;

}
}

fprintf(stderr, "extracted queue name is '%s'\n", queueName);

(directoryName-1) = '\0'; / replace blank with string terminator */
directoryName += strlen(MQFM_DIR_EYECATCHER);

/* add terminator which removes any trailing blanks */
for (chPos=directoryName; *chPos; chPos++)
{

if (*chPos == ' ')
{

*chPos = '\0';
break;

}
}

fprintf(stderr, "extracted directory name is '%s'\n", directoryName);

if (destDir)
{

(destDir-1) = '\0'; / replace blank with string terminator */
destDir += strlen(MQFM_DESTDIR_EYECATCHER);

/* add terminator which removes any trailing blanks */
for (chPos=destDir; *chPos; chPos++)
{

if (*chPos == ' ')
{

*chPos = '\0';
break;

}
}
fprintf(stderr, "extracted destination directory name is '%s'\n",

destDir);
}
}21

/* open source file for binary reading */
21 This is the end of the if(triggeredProcess) block.
Chapter 10. File Transfer Programs 183

fileNameBuffer[0] = '\0'; 22

if (*directoryName != NULL) 23

{
strcat(fileNameBuffer, directoryName); 24

strcat(fileNameBuffer,"/");
}

strcat(fileNameBuffer, fileName); 25

fprintf(stderr, "about to open file '%s'\n", fileNameBuffer);

inFile = fopen(fileNameBuffer, "rb");
if (!inFile)

{
fprintf(stderr, "failed to open file '%s'\n",fileNameBuffer);
perror("");

if (triggeredProcess) 26

{
/* Commit the duff message to remove it from queue */
MQCMIT(hCon, /* connection handle */

&reason); /* reason code */
if (compCode == MQCC_FAILED)

{
fprintf(stderr, "MQCMIT failed with reason code %ld\n",

reason);
exit(1);

}
}

exit(1);
}

22 Make fileNameBuffer a NULL string (in "C" terms).
23 Note that directoryName was set to NULL back at the start, so if you were watching carefully, it can only be non-NULL

at the moment if we executed the if(triggeredProcess) block.
24 We have made fileNameBuffer NULL. If directoryName is not NULL then we copy directoryName into fileNameBuffer

and add "/" to the end of fileNameBuffer. ie We are constructing a fully qualified path name. If your directories are
delimited by characters other than "/", you might have some changes to make here!

25 If you read back through the code you will see that we do have a value for fileName, either from the command line or
from the instruction message (if triggered). So now we do have a fully qualified file name to open.

26 Once again we won't comment much on the "triggered" code path. Note, however, that we need to commit the
instruction message because we used the following get message options when we got it from the queue:

gmo.Options = MQGMO_NO_WAIT /* expect message to be there */
+ MQGMO_SYNCPOINT; /* take msgs off under uow */
184 MQSeries Version 5.1 Administration and Programming Examples

memcpy(&od, &od_original, sizeof(od)); 27

memcpy(&md, &md_original, sizeof(md));

/*********************************/
/* Open the target message queue */
/*********************************/

strncpy(od.ObjectName, queueName, (size_t)MQ_Q_NAME_LENGTH); 28

printf("target queue is %s\n", od.ObjectName);

openOptions = MQOO_OUTPUT /* open queue for output */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(hCon, /* connection handle */ 29

&compCode, /* completion code */
&od, /* object descriptor for queue */
openOptions, /* open options */
&hObj, /* object handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQOPEN failed with reason code %ld\n", reason);
exit(1);

}

/***/
/* put the header message containing the file name */
/***/

/* set message format to STRING */
memcpy(md.Format, MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);
/* Header msg will always have correlid 0 */ 30

msgSeqNo = 0;
memcpy(msgSeqNoText, MQFM_FIRSTMSG_FLAG, sizeof(md.CorrelId)); 31

/* make sure we get new message and correl IDs allocated */
27 This is just a way of copying MQOD_DEFAULT and MQMD_DEFAULT back into "od" and "md" respectively. The "od"

(object descriptor) may be overwritten during the MQOPEN. The "md" (message descriptor) was overwritten during
the MQGET.

28 Whether we have arrived here via triggering or the command line, we do have a value for queueName.
29 The queue that we are opening here is the one on which we will put the messages which make up the file that we are

transferring.
30 Our logic is that the header message for a file being transferred will always have value zeroes (see footnote 8 on page

173 and10.1, “Design” on page 168, including Table 8 on page 168).
31 Same as footnote 30 above.
Chapter 10. File Transfer Programs 185

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId)); 32

memcpy(md.CorrelId, msgSeqNoText, sizeof(md.CorrelId)); 33

/* set up put message options */
pmo.Options |= MQPMO_SYNCPOINT;

/* make sure we get rid of any directory path info from file name */
{

int i;
for (i=strlen(fileName)-1; i>=0; i--)

{
if (fileName[i] == '\\' || fileName[i] == '/')

{
fileName = fileName+i+1;
break;

}
}

}
fileNameBuffer[0] = '\0'; 34

strcpy(fileNameBuffer, MQFM_FILENAME_EYECATCHER); 35

strcat(fileNameBuffer, fileName);
if (destDir) 36

{
strcat(fileNameBuffer, " "MQFM_DESTDIR_EYECATCHER); 37

strcat(fileNameBuffer, destDir);
}

32 The MQMI_NONE ensures that the Queue Manager will create a new and unique MsgId which will be available (in
md.MsgId) after the MQPUT.

33 We are setting md.CorrelId equal to msgSeqNoText which is equal to MQFM_FIRSTMSG_FLAG which is equal to
"000000000000000000000000". This has the effect of forcing the CorrelId to that value of zeroes in the header of the
message. This is what will allow us (at the receiving end) to recognize this message as a "header message" type. See
Table 8 on page 168.

34 fileNameBuffer was used in the "fopen" call to open the file which we are sending. It won't be used again for the
duration of the program. Here we reuse it as a buffer to build the data portion of the Header Message. Here I set it to
the NULL string. (You may consider this poor programming and prefer to define another buffer).

35 These two lines copy into fileNameBuffer both MQFM_FILENAME_EYECATCHER (ie FILENAME=) and the value in
fileName.

36 If we have a value for destDir" or in other words "if a value for the destination directory has been specified". What this
means is that it was decided to specify the "destination directory" from the file-sending end rather than picking up the
default destination directory at the file-receiving end.
See footnote 6 on page 173 for an example of how a default destination directory would be specified at the
file-receiving end (using the UserData attribute of an MQSeries process definition - which ends up in the generated
Trigger Message - see footnote 54 on page 194).

37 If there was a destDir then we append it and its eyecatcher to fileNameBuffer. There is a logical error here. Back when
we specified the size of fileNameBuffer (near the head of the program) we allowed for the filename and its eyecatcher
but not for the destDir and its eyecatcher! Since there are 200 bytes for MQFM_MAX_FILENAME it's not usually a
problem, but you could correct this error for yourself.
186 MQSeries Version 5.1 Administration and Programming Examples

/* finally, put the message on queue */

MQPUT(hCon, /* connection handle */ 38

hObj, /* object handle */
&md, /* message descriptor */
&pmo, /* put options */
strlen(fileNameBuffer), /* buffer length */
fileNameBuffer, /* segment buffer */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQPUT failed with reason code %ld\n",reason);
exit(1);

}

/* save the MsgId for later */ 39

memcpy(savedMsgId, md.MsgId, sizeof(md.MsgId));

/* set message format to NONE to avoid message data conversion */

memcpy(md.Format, MQFMT_NONE, (size_t)MQ_FORMAT_LENGTH);

/* set up put message options */

pmo.Options |= (MQPMO_SYNCPOINT);

messageCount = 0; 40

totalBytesRead = 0; 41

/*******************************/
/* read file until eof reached */
/*******************************/

while(!feof(inFile))
38 This is the header message we are about to put. It has a CorrelId of zeroes (which identifies it as a header message).

Note that it contains none of the data from the file we are seeking to transfer.
39 It is essential that we save the MsgId. Although we allowed the queue manager to allocate this MsgId (see footnote 32)

it will now be saved and passed as the MsgId of EVERY message that constitutes a part of the file we are transferring.
That is our logic. A file in transfer is represented by three TYPES of message (see Table 8 on page 168):

Header MsgId=<ReturnedOnHeaderPut> CorrelId=000000000000000000000000
Intermediate MsgId=<ReturnedOnHeaderPut> CorrelId=N (value of N for the Nth msg)
Trailer MsgId=<ReturnedOnHeaderPut> CorrelId=999999999999999999999999

40 The number of messages we've sent.
41 The number of bytes of the file we've sent.
Chapter 10. File Transfer Programs 187

{
/* read maximum of MQFM_MESSAGE_SIZE bytes from file into buffer */ 42

bytesRead = fread((void *)readBuffer,
(size_t)1,
(size_t)MQFM_MESSAGE_SIZE,
inFile);

/* did we get a full buffer? */ 43

if (bytesRead != MQFM_MESSAGE_SIZE)
{

/* check for stream errors */
if(ferror(inFile))

{
fprintf(stderr, "read failure on file '%s'\n",

fileName);
perror("");
exit(1);

}

/* no stream error, so assume its end of file */
}

printf("Read %d bytes from file\n", bytesRead);
totalBytesRead += bytesRead;

/**/
/* Build message segment and write to queue */
/**/

/* increment our msgSeqNo - and text version */
msgSeqNo++; 44

sprintf(msgSeqNoText, "%024d", msgSeqNo); 45

/* force MsgId and CorrelId to values we want */
memcpy(md.MsgId, savedMsgId, sizeof(md.MsgId)); 46

if (!feof(inFile))
{ /* intermediate segment */
memcpy(md.CorrelId, msgSeqNoText, sizeof(md.CorrelId)); 47

}

else
42 We read 5000 bytes at a time. Each message will have 5000 bytes of file data (except for the header, which has no file

data and is quite small, and possibly the trailer, which could be 5000 bytes or less).
43 If we didn't get a full buffer then after a bit more checking we assume that we have reached the end of the file.
44 Easy-to-increment MsgSeqNo, which is integer.
45 Not-so-easy-to-increment msgSeqNoText, which is string data.
46 We want every message in the file transfer group to have the same MsgId (see footnote39 on page 187 and Table 8).
47 For intermediate messages (not header or trailer) we want the CorrelId to be the text representation of MsgSeqNo

which is incrementing by one for each message. See Table 8 on page 168.
188 MQSeries Version 5.1 Administration and Programming Examples

{ /* final segment */
memcpy(md.CorrelId, MQFM_LASTMSG_FLAG, sizeof(md.CorrelId)); 48

}

/* finally, put the message on queue */
MQPUT(hCon, /* connection handle */

hObj, /* object handle */
&md, /* message descriptor */
&pmo, /* put options */
bytesRead, /* buffer length */
readBuffer, /* segment buffer */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQPUT failed with reason code %ld\n",reason);
exit(1);

}

/* bump the message count */
messageCount++;

}

/***/
/* if we got to here, then we've been successful thus far, */
/* so commit msg */ 49

/* **/
MQCMIT(hCon, /* connection handle */

&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{
fprintf(stderr, "MQCMIT failed with reason code %ld\n", reason);
exit(1);
}

48 For the trailer we want a CorrelId value of MQFM_LASTMSG_FLAG which is "999999999999999999999999". See
Table 8 on page 168.

49 The point here is that we have just put all the messages under syncpoint. That is, the header, all "N" intermediate
messages and the trailer were all put under a logical unit of work. At this point we MQCMIT to commit all the work, thus
making all the messages available for transport to the destination. The reason is that we really don't want incomplete
message sets getting to the receiving end. We could handle that scenario at the receiving end but it would make our
code more complex. By using the syncpoint we get MQSeries to do the worrying for us about delivery. We know we
have successfully put ALL our messages so we trust that MQSeries will get them ALL to the destination.
Chapter 10. File Transfer Programs 189

/************************/ 50

/* Close the input file */
/************************/
fclose(inFile);

if (triggeredProcess)
{

/*************************/
/* Close the input queue */
/*************************/
MQCLOSE(hCon, /* connection handle */

&hObj_Input, /* object handle */
0, /* close options */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCLOSE failed with reason code %ld\n",
reason);

}
}

/**************************/
/* Close the target queue */
/**************************/
MQCLOSE(hCon, /* connection handle */

&hObj, /* object handle */
0, /* close options */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCLOSE failed with reason code %ld\n", reason);
}

/*********************************/
/* Disconnect from queue manager */
/*********************************/
MQDISC(&hCon, /* connection handle */

&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQDISC failed with reason code %ld\n",reason);
50 The remainder of this program is standard MQSeries code for closing down.
190 MQSeries Version 5.1 Administration and Programming Examples

}

/* dump out some stats */

printf("\n");
printf("Input file: %s\t\t%d bytes read\n"

"Output queue: %s\t\t%d segments written\n",
fileNameBuffer, totalBytesRead,
queueName, messageCount);

return(0);
}

Chapter 10. File Transfer Programs 191

10.7 getFile.c

/*

* NAME: getFile.c - read specified MQ queue and recover named file
* from retrieved segmented messages. 51

* SYNOPSIS:
* #include <mqfm_defs.h>
*
* DESCRIPTION: getFile <queueName> <fileName>
*
* NB: This application assumes it will use the default queue manager.
* Therefore, the queue manager on the machine running this application
* must have been defined with the -q option, i.e.
* crtmqm -q <queue manager name>
*
**
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <cmqc.h>
#include <mqfm_defs.h>

int main(int argc, char **argv)
{

FILE *outFile; /* output file handle */
char fileNameBuffer[MQFM_MAX_FILENAME +

sizeof(MQFM_FILENAME_EYECATCHER) + 1];
char writeBuffer[MQFM_MESSAGE_SIZE], /* our message buffer */

fileName, / target file name */
userFileName = NULL, / user supplied file name */
dropoffDirectory=NULL, / output directory name */
fullFileName[MQFM_MAX_FILENAME + MQFM_MAX_DIRECTORY],
queueName, / source queue name */
*chPos,
destDir; / optional dest directory in message */
int bytesWritten, /* bytes read from input file */
totalBytesWritten;

int fileComplete; /* set when complete file read */
MQLONG messageLength;

51 As was noted at the head of the putFile program, this is not V5 segmentation, but our own coding. By now you will be
getting familiar with the style of these programs, so we will comment less from here on.
192 MQSeries Version 5.1 Administration and Programming Examples

/* various MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

MQHCONN hCon; /* connection handle */
MQLONG compCode; /* completion code */
MQLONG reason; /* reason code */

MQHOBJ hObj; /* object handle */
MQLONG openOptions; /* MQOPEN options */
MQTM *triggerMsgP; /* trigger message */

int messageCount;
int triggeredProcess = FALSE; /* are we triggered? */
int moreMessages = TRUE; /* any more messages? */
int msgSeqNo, SeqNoFromMsg; /* seq numbers to be compared */
char savedMsgId[25]; /* we use the same MsgId many times */
char CorrelIdBuff[25]; /* a scratchpad field for the sequence number */

printf("%s program running\n", argv[0]);

if (argc < 2)
{

printf("Required parameter(s) missing\n");
printf("Usage: %s <queueName> [<fileName>]\n", argv[0]);
exit(1);

}

/* have we been triggered? */
if (argc == 2)

{
if (!(memcmp(argv[1], "TMC ", 4))) 52

{
triggeredProcess = TRUE;

}
}

if (triggeredProcess)
{

/* map parameter to trigger message structure */
triggerMsgP = (MQTM *)argv[1];
queueName = triggerMsgP->QName; 53

52 See footnote 17 on page 179 for an explanation of what's happening here. Note that both putFile and getFile are able
to run triggered, or from the command line.

53 See footnote 18 on page 180.
Chapter 10. File Transfer Programs 193

dropoffDirectory = triggerMsgP->UserData; 54

}
else

{
/* extract input parameters for convenience */
queueName = argv[1];
if (argc == 3)

{
userFileName = argv[2]; 55

}
}

/****************************/
/* Connect to queue manager */
/****************************/
MQCONN("", /* default queue manager */

&hCon, /* connection handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCONN failed with reason code %ld\n",reason);
exit(1);

}

/*********************************/
/* Open the source message queue */
/*********************************/
strncpy(od.ObjectName, queueName, (size_t)MQ_Q_NAME_LENGTH);
printf("source queue is %s\n", od.ObjectName);

openOptions = MQOO_INPUT_AS_Q_DEF /* open queue for input */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN(hCon, /* connection handle */
&od, /* object descriptor for queue */
openOptions, /* open options */
&compCode, /* completion code */
&reason); /* reason code */

54 This is new. See Table 9 on page 170 (footnote i) and footnote 6 on page 173, to understand what this is used for. The
default value for the directory part of the fully qualified pathname for the file we are about to reconstruct reaches us in
this way. It was set as the UserData attribute of the PROCESS statement and only applies if we have been triggered.
When getFile is triggered, this UserData is transferred into the Trigger Message. What you see here is getFile
retrieving that data from the Trigger Message.

55 If getFile was started from the command line and if a filename was specified, this is retrieved. It will later be used to
override any filename that may have arrived in the Header Message.
194 MQSeries Version 5.1 Administration and Programming Examples

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQOPEN failed with reason code %ld\n",reason);
exit(1);

}

fprintf(stderr, "queue opened\n");

/**/
/* We loop here. When we have finished processing a file, */
/* we go back for another header message, */
/* which MUST have CorrellId "MQFM_FIRSTMSG_FLAG". */
/* If such a one does not exist, we conclude */
/* that there are no more messages to process. */
/**/

while (moreMessages) 56

{

/***/
/* get the header message containing the file name */
/***/
msgSeqNo = 0; /* our hdr msg will always have CorrelId 0 */ 57

memcpy(md.MsgId, MQMI_NONE, sizeof(md.MsgId)); 58

memcpy(md.CorrelId, MQFM_FIRSTMSG_FLAG, sizeof(md.CorrelId)); 59

gmo.Options = MQGMO_NO_WAIT /* expect message to be there */
+ MQGMO_SYNCPOINT; /* take msgs off under uow */

MQGET(hCon, /* connection handle */
hObj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
(MQLONG)sizeof(fileNameBuffer), /* size of receive buffer */
fileNameBuffer, /* message buffer */
&messageLength, /* returned message length */
&compCode, /* completion code */
&reason); /* reason code */

56 This is the outer loop for processing all the messages for an individual file transfer.
57 We have already covered this well. See Table 8 on page 168.
58 Get the MQ-generated MsgID from the Header Message of the file. This will represent the file through all the messages

that comprise it.
59 We recognize a Header Message because it has CorrelId = MQFM_FIRSTMSG_FLAG =

"000000000000000000000000".
Chapter 10. File Transfer Programs 195

if (compCode == MQCC_FAILED)
{

moreMessages = FALSE;
printf(stderr, "No more files to process: MQRC %ld\n", reason);
exit(1);

}

/* save the MsgId for later */
memcpy(savedMsgId, md.MsgId, sizeof(md.MsgId)); 60

fprintf(stderr, "header message got\n");
/* check that message is in format we expect */
if (strncmp(fileNameBuffer, MQFM_FILENAME_EYECATCHER,

strlen(MQFM_FILENAME_EYECATCHER))) 61

{
fprintf(stderr, "Header message does not contain file name\n");
exit(1);

}
/* check for optional destination directory in message */
destDir = strstr(fileNameBuffer, MQFM_DESTDIR_EYECATCHER); 62

/* extract file name */
fileName = fileNameBuffer + strlen(MQFM_FILENAME_EYECATCHER);
if (destDir)

{
(destDir-1) = '\0'; / replace blank with string terminator */
destDir += strlen(MQFM_DESTDIR_EYECATCHER);

/* add terminator which removes any trailing blanks */
for (chPos=destDir; *chPos; chPos++)

{
if (*chPos == ' ')

{
*chPos = '\0';
break;

}
}

}
if(userFileName) 63

{
fileName = userFileName;

}

60 See footnote 58 on page 195.
61 In the Header Message, the filename is mandatory.
62 The Destination Directory is optional.
63 If getFile was started from the command line and a filename was specified, then this overrides the filename passed in

the Header Message. See footnote 55 on page 194 and Table 9 on page 170.
196 MQSeries Version 5.1 Administration and Programming Examples

printf("using %sfilename '%s'\n",
userFileName ? "user supplied " : "", fileName);

/* open target file for binary writing */
fullFileName[0] = '\0';

/* build file name */
if (destDir) 64

{
strcat(fullFileName, destDir);
strcat(fullFileName, "/");

}
else

{ 65

if (dropoffDirectory)
{
strcat(fullFileName, dropoffDirectory);

/* strip rubbish from end of where dropoffDirectory points */
*strstr(fullFileName, MQFM_TRIGM_USERD_EYECATCHER) = 0x00;
strcat(fullFileName, "/");

}
}

strcat(fullFileName, fileName);

outFile = fopen(fullFileName, "wb");
if (!outFile)

{
printf(stderr, "failed to open file '%s'\n", fullFileName);
perror("");
exit(1);

}

messageCount = 0;
totalBytesWritten = 0;

/***/
/* Get messages from the message queue until we've retrieved the */
/* complete file */
/***/
fileComplete = FALSE;
while (!fileComplete) 66

{

64 IF a destination directory was supplied in the Header Message
65 THEN it overrides the destination directory supplied via the Trigger Message (which comes from the UserData attribute

of the PROCESS statement of the triggered process). See Table 9 on page 170.
66 This is the inner loop where we cycle through all the file transfer messages that contain file data. (that is, all but the
Header Message).
Chapter 10. File Transfer Programs 197

gmo.Options = MQGMO_NO_WAIT /* expect message to be there */
+ MQGMO_SYNCPOINT; /* take msgs off under uow */

/***/
/* In order to read the messages in sequence, MsgId and */
/* CorrelID must have the correct values. MQGET sets them */
/* on every call, so we re-initialise them before every call */
/***/
memcpy(md.MsgId, savedMsgId, sizeof(md.MsgId)); 67

memcpy(md.CorrelId, MQCI_NONE, sizeof(md.CorrelId)); 68

/**/
/* MQGET sets Encoding and CodedCharSetId to the values in */
/* the message returned, so these fields should be reset to */
/* the default values before every call. */
/**/
md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(hCon, /* connection handle */
hObj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
(MQLONG)sizeof(writeBuffer), /* size of receive buffer */
writeBuffer, /* message buffer */
&messageLength, /* returned message length */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQGET failed with reason code %ld\n",reqson);
exit(1);

}

messageCount++;
msgSeqNo++;

/***************************/
/* check for final segment */
/***************************/
/* convert sequence no in message to integer */

memcpy(CorrelIdBuff, md.CorrelId, sizeof(md.CorrelId));
seqNoFromMsg = atoi(CorrelIdBuff);

67 We specify to the MQGET the MsgID that it must match on the GET.
68 We READ from the resulting Message Header the CorrelID.
198 MQSeries Version 5.1 Administration and Programming Examples

if (!(memcmp(md.CorrelId,MQFM_LASTMSG_FLAG,sizeof(md.CorrelId))))69

{
fileComplete = TRUE;
}
else
{
if (msgSeqNo != SeqNoFromMsg) 70

{
fprintf(stderr, "MQ message contains invalid sequence number.\n");
fprintf(stderr, "Next Seq No should have been: (%d)\n",

msgSeqNo);
fprintf(stderr, "The message actually contained: (%d)\n",

SeqNoFromMsg);
}
}

/*************************/
/* write segment to file */ 71

/*************************/
bytesWritten = fwrite((void *)writeBuffer,

size_t)1,
(size_t)messageLength,
outFile);

/* did we write the whole buffer? */
if (bytesWritten != messageLength)

{
/* check for stream errors */
if(ferror(outFile))

{
fprintf(stderr, "write failure on file '%s'\n",

fullFileName);
perror("");
exit(1);

}
/* can't think how we could ever get here, but we'd better exit */

fprintf(stderr, "unexpected write failure on file '%s'\n",
fullFileName);

exit(1);
}

printf("Wrote %d bytes to file\n", bytesWritten);
totalBytesWritten += bytesWritten;
} /* end of second WHILE

69 We check to see if this is the LAST chunk of the file transfer data. See footnote 48 on page 189.
70 If not, we check that it is the next expected chunk in the sequence. See footnote 2 on page 169.
71 In this block we write the chunks out to the file on this, the receiving side.
Chapter 10. File Transfer Programs 199

/* if we got to here, then we've been successful thus far, */
/* so commit msg */ 72

MQCMIT(hCon, /* connection handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCMIT failed with reason code %ld\n",reason);
exit(1);

}

/*************************/ 73

/* Close the output file */
/*************************/
fclose(outFile);

} /* end of first WHILE */

/***/
/* We have processed ALL messages (logical files) from the queue */
/***/

/**************************/
/* Close the source queue */
/**************************/
MQCLOSE(hCon, /* connection handle */

&hObj, /* object handle */
0, /* close options */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQCLOSE failed with reason code %ld\n",
reason);
}

/*********************************/
/* Disconnect from queue manager */
/*********************************/

72 We have been doing all our GETs under syncpoint, so if we have successfully written the file, we MQCMIT that does
the final transactional delete of the messages from the queue.
Note: If the program fails before this MQCMIT, then all the messages will be rolled back onto the queue and the file
chunks will be available once again to be processed when/if getFile is re-invoked.

73 All standard MQSeries processing for termination, from here on.
200 MQSeries Version 5.1 Administration and Programming Examples

MQDISC(&hCon, /* connection handle */
&compCode, /* completion code */
&reason); /* reason code */

if (compCode == MQCC_FAILED)
{

fprintf(stderr, "MQDISC failed with reason code %ld\n",
reason);
}

/* dump out some stats */
printf("\n");
printf("Input queue: %s\t\t%d segments read\n"

"Output file: %s\t\t%d bytes written\n",
queueName, messageCount,
fullFileName, totalBytesWritten);

return(0);
}

Chapter 10. File Transfer Programs 201

202 MQSeries Version 5.1 Administration and Programming Examples

Chapter 11. MQSeries Security Changes

There are significant changes in the security function with MQSeries Version
5.1. If you are migrating from MQSeries Version 5.0 or an earlier release, you
will need to consider the impact of the following changes on your existing
procedures.

11.1 MQSeries for Windows NT

A user ID can be up to 20 characters long and can be domain-qualified, for
example, user@domain. A domain-qualified user ID can be up to 64 bytes
long.

MQSC, PCF, and SETMQAUT have been changed to allow long names.

Note: Although the architecture can now accommodate 64-character-long
names, MQSeries (and Windows NT) support user IDs of no more than 20
characters, and domain names no more than 15 characters long.

The Windows NT Security Identifier (SID) is used to supplement the user ID.
The following structures and formats are changed to accommodate the SID:

• mqmd: changed use of the AccountingToken field
• mqod: new field
• mqcd: new field

The Object Access Manager (OAM) has been rewritten to allow SID and
domain information to be specified in addition to a user ID. A new caching
mechanism has been implemented to improve performance. And new event
log messages give details of authorization failures.

11.2 MQSeries Client Identification

Windows NT and UNIX clients send the currently logged-in user ID when they
connect to a queue manager. The Windows NT Client sends the logged-in
user's Security Identifier (SID) also.

These clients no longer read the mq_user_id and mq_password environment
variables.

Windows 95 and 98 Clients send mq_user_id (if set), or the current user ID
(if logged in).

If neither is available, no client identification is passed.
© Copyright IBM Corp. 1999 203

Clients that use the mq_user environment variable may now provide a
domain-qualified user ID (for example, user@domain), which can be up to 64
characters long.

Clearly, this is useful only when the queue manager is running on Windows
NT.

There is no change for DOS, OS/2, or Windows 3.1 clients.

11.3 Long User IDs

On Windows NT only, user identifiers longer than 12 characters (for example,
the notorious 13-character-long Administrator) can now be used.

The Windows NT security identifier (SID) supplements the 12-character user
ID. It contains information that identifies the full user account details on the
Windows NT security account manager (SAM) database where the user is
defined. When a message is created on MQSeries for Windows NT,
MQSeries stores the SID in the AccountingToken field in the message
descriptor. The value of the last byte of the AccountingToken
(MQACTT_NT_SECURITY_ID) indicates whether it contains a SID.

Figure 150. Security IDs
204 MQSeries Version 5.1 Administration and Programming Examples

Figure 150 on page 204 display SIDs for three users of different types:

• A user connected locally to QM_2 accessing LQ_1.QM_2

• A user connecting to QM_2 as a Client and accessing LQ_1.QM_2

• A user connected to QM_4, accessing LQ_1.QM_2 remotely

11.4 Authorization Check

When MQSeries for Windows NT performs authorization checks, it uses the
SID to query the full information from the SAM database. The issuing SAM
can be identified from the SID, so SID resolution is efficient; the correct SAM
can be queried directly.

Figure 151. Security Policy

The SAM database in which the user was defined must be accessible for this
query to succeed. An NT system that belongs to a domain has access to the
Chapter 11. MQSeries Security Changes 205

SAMs on the primary domain and all trusted domains, as well as the local
system SAM.

A security policy can be specified for each queue manager by setting the
SecurityPolicy attribute in the Queue Manager Properties.

The security policy dictates how the OAM behaves when it receives authority
requests which do not contain Windows NT security identifier (NT SID)
information, for example, in a multi-platform environment. When using the
default security policy, it is permissible for the OAM to receive authority
requests that do not contain SID information. In such situations, the OAM
attempts to resolve the user ID into a Windows NT SID by searching:

• The local security database

• The security database of the primary domain

• The security database of trusted domains

Figure 152. SID Processing

SID
supplied?

SID
resolved?

SID
required?

SID
required?

SID
obtained?

Membership?

SID
consistent?

OK

Error 2

Error 1

Error 3

Error 5

Error 4

Y N

Y

Y

Y N

N

N

N

N

N

Y

Y

Y

206 MQSeries Version 5.1 Administration and Programming Examples

If the security policy is set to the value NTSIDsRequired, then both the user
ID and NT SID information must be passed to the OAM. In cases where both
a user ID and NT SID information are passed to the OAM, a check is made to
ensure that the two are consistent. The supplied user ID is compared with
the user ID (or the first 12 characters if the user ID is longer than 12
characters) associated with the NT SID. If the two are unequal, then
authorization fails. This consistency check is performed regardless of the
security policy setting. The logic flow of how the SID is handled is
summarized in Figure 152 on page 206.

Errors:
UNABLE_TO_RESOLVE_SID (AMQ8073)

INCONSISTENT_ENTITY (AMQ8074)

UNABLE_TO_OBTAIN_SID (AMQ8075)

NO_SID (AMQ8076)

NOT_AUTHORIZED (various messages corresponding to reason code 2035)

Figure 153. Authorization Example
Chapter 11. MQSeries Security Changes 207

The setmqaut and dspmqaut control commands are still used to set, change,
and display authorizations in MQSeries 5.1. For example, authorize mq_user
as client to access local queue LQ_1.QM_2 on queue manager QM_2 is
shown in Figure 153 on page 207.

11.5 Security in Clusters

Here we provide answers to some frequently asked questions:

How do I stop certain queue managers sending messages to my queue
manager?

Use existing channel security exits.

How do I stop certain user IDs in the cluster putting to my queues?

Use existing queue security, in conjunction with PUTAUTH(DEF|CTX) on the
CLUSRCVR.

How do I force an unwanted queue manager out of a cluster?

Use the command:

RESET CLUSTER(name) QMNAME(QueueManagerName) ACTION(FORCEREMOVE)

How do I limit activity from a specific queue manager in the cluster?

Use a channel message exit to substitute the user ID in the message
descriptor for a less privileged one. Or set PUTAUT(DEF) and set the MQCD
MCAUSER to a low privilege user.

How do I stop specific user IDs from putting to a cluster queue at the
originating end?

Use existing queue security at the putting queue manager.
208 MQSeries Version 5.1 Administration and Programming Examples

Chapter 12. Using Dynamic Queues

There are two kinds of dynamic queues:

• Temporary dynamic queues

• Permanent dynamic queues

In order to create a dynamic queue you need a model queue as a template.
MQSeries provides the SYSTEM.DEFAULT.MODEL.QUEUE which is used to
create temporary dynamic queues. To create permanent dynamic queues,
define your own model. Temporary dynamic queues are deleted from the
system when the queue is closed, whereas a permanent dynamic queue is
deleted explicitly.

12.1 Temporary Dynamic Queues

Temporary dynamic queues hold non-persistent messages only. Such a
queue is often used as “reply-to queue”. After the application ends it is no
longer needed. Also, it is not recoverable.

To create a temporary dynamic queue:

• Specify the model queue in the MQOD ObjectName field.

• Specify its name in the MQOD DynamicQName field.

The queue is deleted:

• When the queue manager is started

• When the application that created the queue closes it

• When the application that created it ends

In this section we will show how to create and use a temporary dynamic
queue as a reply-to queue for a COA (confirmation on arrival) report
message. You will put a message in a queue and receive a COA report once
the message has reached the queue. In order to do this we will specify a
dynamic queue to receive the report message.

12.1.1 Creating a Temporary Dynamic Queue
1. In order to create a dynamic queue you need to specify a model queue to

be used as a template. You can use the MQSeries-provided model queue,
SYSTEM.DEFAULT.MODEL.QUEUE, shown below:

define qmodel(SYSTEM.DEFAULT.MODEL.QUEUE) deftype(TEMPDYN)
© Copyright IBM Corp. 1999 209

This queue is automatically crested when you create the queue manager.
Its default attributes are shown in Figure 154.

Figure 154. SYSTEM.DEFAULT.MOEL.QUEUE Attributes

2. The dynamic queue is created when you issue an MQOPEN. Before you
open it, move the name of the model queue into the object descriptor, such
as:

MQOD odd = {MQOD_DEFAULT}; /* Dynamic queue object descr */
strncpy(odd.ObjectName,

"SYSTEM.DEFAULT.MODEL.QUEUE",
(size_t)MQ_Q_NAME_LENGTH);

3. You can specify your own name for the dynamic queue to be created or let
the system create one for you. You can also do both. If you add an * at the
end of your name the system will create a tag that will be appended to the
name you specified, for example:

// Provide your own name for the dynamic queue or a prefix
strncpy(odd.DynamicQName, /* default temp dynamic queue */

"DYNQ4REP.*",
(size_t)MQ_Q_NAME_LENGTH);

dis qmodel (system.default.model.queue)
1 : dis qmodel (system.default.model.queue)

AMQ8409: Display Queue details.
DESCR() PROCESS()
BOQNAME() INITQ()
TRIGDATA() QUEUE(SYSTEM.DEFAULT.MODEL.QUEUE)
CRDATE(1999-09-13) CRTIME(13.12.21)
ALTDATE(1999-09-13) ALTTIME(13.12.21)
GET(ENABLED) PUT(ENABLED)
DEFPRTY(0) DEFPSIST(NO)
MAXDEPTH(5000) MAXMSGL(4194304)
BOTHRESH(0) NOSHARE
DEFSOPT(EXCL) NOHARDENBO
MSGDLVSQ(PRIORITY) RETINTVL(999999999)
USAGE(NORMAL) NOTRIGGER
TRIGTYPE(FIRST) TRIGDPTH(1)
TRIGMPRI(0) QDEPTHHI(80)
QDEPTHLO(20) QDPMAXEV(ENABLED)
QDPHIEV(DISABLED) QDPLOEV(DISABLED)
QSVCINT(999999999) QSVCIEV(NONE)
DISTL(NO) DEFTYPE(TEMPDYN)
TYPE(QMODEL)
210 MQSeries Version 5.1 Administration and Programming Examples

The dynamic queue that the queue manager creates using the above
specifications will be similar to DYNQ4REP.1999110120035043. You can see
that the suffix contains the date and a random number.

4. Next open the queue with the open options you require, for example:

O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */
+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */

MQOPEN (Hcon, /* connection handle */
&odd, /* object descriptor for queue*/
O_options, /* open options */
&Hobjd, /* object handle */
&OpenCode,&Reason); /* completion and reason codes*/

5. After the queue is created, save its name in a variable for later use. You
will need it when you specify the reply-to queue in the request message:

// This field will hold the name of the dynamic queue
MQBYTE DynQName[49];
strncpy (DynQName, odd.ObjectName, 48);
DynQName[48] = '\0';

12.1.2 Writing to a Temporary Dynamic Queue
Now let us create a request message that requests a COA report message to
be placed in the dynamic queue we just created. MQ Series provides an
efficient call you can use when you only want to open a queue, put a message
in it and then close it, namely MQPUT1.

1. We use the default options and request a COA report by setting a switch in
the message header:

O_options = MQOO_OUTPUT; /* open queue for output */

md.Report = MQRO_COA ; /* specify that you expect COA */

2. Now we have to specify the “return address”, which is the reply-to queue
and the reply-to queue manager:

memcpy(md.ReplyToQ, /* ReplyToQ is the dynamic queue */
odd.ObjectName,
sizeof(odd.ObjectName));

strncpy(md.ReplyToQMgr, /* ReplyToQM is the owning queue manager*/
odd.ObjectQMgrName,
sizeof(odd.ObjectQMgrName));
Chapter 12. Using Dynamic Queues 211

In the above memcpy instruction we can obtain the queue name from both
odd.ObjectName and the variable DynQName.

3. Now we can issue a normal MQPUT1 call. Here we put out an empty
message.

buflen = 0 ; /* put an empty message */
MQPUT1(Hcon, /* connection handle */

&odt, /* object descriptor for queue */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
buflen, /* buffer length */
&buffer, /* message buffer */
&CompCode, &Reason); /* completion and reason codes */

12.1.3 Getting from a Temporary Dynamic Queue
The following code describes how to check that the message you received in
the dynamic queue is a report message.

1. Wait a few seconds and then issue an MQGET to retrieve the next
message in the queue.

gmo.Options = MQGMO_WAIT /* wait for new messages */
+ MQGMO_ACCEPT_TRUNCATED_MSG;

gmo.WaitInterval = 5000; /* 5 second limit for waiting */

buflen = sizeof(buffer) - 1; /* buffer size available for GET */

memcpy(md.MsgId, /* reset MsgId to get a new one */
MQMI_NONE, sizeof(md.MsgId));

memcpy(md.CorrelId, /* reset CorrelId to get a new one*/
MQCI_NONE, sizeof(md.CorrelId));

MQGET(Hcon, /* connection handle */
Hobjd, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode,&Reason); /* completion and reason codes */

2. Following the MQGET we check the return code and then find out of the
message we just retrieved is indeed the COA. You can use the following
code:
212 MQSeries Version 5.1 Administration and Programming Examples

if (Reason != MQRC_NONE)
{
printf("MQGET ended with reason code %ld\n", Reason);

}
else if ((md.MsgType == MQMT_REPORT) &&

(md.Feedback == MQFB_COA))
{

printf("Relax ... Message Arrived !\n");
}

12.2 Report Messages

The table below lists report message types and who generates them:

12.3 Permanent Dynamic Queues

Permanent dynamic queues hold persistent and non-persistent messages.
Those queues are recoverable in case of a system failure.

To create a permanent dynamic queue:

• Define your own model queue.

• Specify the model queue name in the MQOD ObjectName field.

• Specify the name of the dynamic queue in the MQOD DynamicQName
field.

Report Type Generated by

Exception report MCA (message channel agent)

Expiry report MQM (queue manager) when it executes an
MQGET and detects that the message that has
expired

COA
Confirmation on arrival

MQM (queue manager) when the message
reached the target queue

COD
Confirmation on delivery

MQM (queue manager) when the mesage has
been retrieved by the application

PON
Positive action notofication

Application (programmer)

NON
Negative action notification

Application (programmer)
Chapter 12. Using Dynamic Queues 213

A permanent dynamic queue is deleted:

• When an application closes the queue with the MQCO_DELETE or
MQCO_DELETE_PURGE option (not necessarily the application that
created the queue).

• The purge succeeds when there are committed messages in the queue.

• It can be deleted as normal queues.

A model for a permanent dynamic queue is not automatically created. So you
have to define one by yourself. Below are two examples:

define qmodel(PERM.MODEL.QUEUE) deftype(PERMDYN)

define qmodel(PERM.MODEL.QUEUE) deftype(PERMDYN) DEFPSIST(YES)

Before the open you have to put the names of the model queue and the
temporary queue in the object descriptor. This is similar to creating a
temporary dynamic queue:

strncpy(odd.ObjectName, /* model queue */
"PERM.MODEL.QUEUE",
(size_t)MQ_Q_NAME_LENGTH);

strncpy(odd.DynamicQName, /* perm. dynamic queue */
"PERQ4REP.*",
(size_t)MQ_Q_NAME_LENGTH);

When the program end, the queue may still be there. Only temporary dynamic
queues are automatically deleted when the program ends. For permanent
dynamic queues, you have to specify the close option as shown below:

C_options = MQCO_DELETE ;

MQCLOSE(Hcon, /* connection handle */
C_options, /* close option */
&CompCode,&Reason); /* completion and reason codes */

Note: The complete programs discussed in this chapter are on the diskette
supplied with this book.
214 MQSeries Version 5.1 Administration and Programming Examples

Appendix A. Sample Configuration Output

"CLUSTER CONFIGURE QM_1.................................."
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * This ALTER QMGR needs to run early. The scripts for QM_1 & QM_3 ore
: * therefore need to be RUN first!

1 : ALTER QMGR REPOS(CL_MQ51)
AMQ8005: MQSeries queue manager changed.

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration
: * of the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard

2 : DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
REPLACE

AMQ8014: MQSeries channel created.
:

3 : DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME('127.0.0.1(1417)') CLUSTER(CL_MQ51) REPLACE

AMQ8014: MQSeries channel created.
:

4 : DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME('127.0.0.1(1415)') CLUSTER(CL_MQ51) NETPRTY(0)
REPLACE

AMQ8014: MQSeries channel created.
:

5 : DEFINE QLOCAL(TQ_1) REPLACE
AMQ8006: MQSeries queue created.

:
6 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE

AMQ8006: MQSeries queue created.
:
:

6 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.
"CLUSTER CONFIGURE QM_3.................................."
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * This ALTER QMGR needs to run early. The scripts for QM_1 & QM_3
: * therefore need to be RUN first!

1 : ALTER QMGR REPOS(CL_MQ51)
AMQ8005: MQSeries queue manager changed.

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of
: * the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard

2 : DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
© Copyright IBM Corp. 1999 215

REPLACE
AMQ8014: MQSeries channel created.

:
3 : DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP)

CONNAME('127.0.0.1(1415)') CLUSTER(CL_MQ51) REPLACE
AMQ8014: MQSeries channel created.

:
4 : DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME('127.0.0.1(1417)') CLUSTER(CL_MQ51) NETPRTY(0) REPLACE
AMQ8014: MQSeries channel created.

:
5 : DEFINE QLOCAL(TQ_3) REPLACE

AMQ8006: MQSeries queue created.
:

6 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE
AMQ8006: MQSeries queue created.

:
7 : DEFINE QLOCAL(CLQ_ACROSS_2_3_4) CLUSTER(CL_MQ51) REPLACE

AMQ8006: MQSeries queue created.
:
:

7 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.
"CLUSTER CONFIGURE QM_2.................................."
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * Do not run this script until AFTER the scripts for QM_1 and QM_3
: * have been run!
:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of
: * the queue manager over TCP/IP" in Step 3 of the Create Queue
: * Manager wizard

1 : DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
REPLACE

AMQ8014: MQSeries channel created.
:
:
:
:
etc.
216 MQSeries Version 5.1 Administration and Programming Examples

Appendix B. Log File Created by crt_str_all

G:\>crtmqm QM_1
MQSeries queue manager created.
Creating or replacing default objects for QM_1.
Default objects statistics : 29 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

G:\>crtmqm QM_2
MQSeries queue manager created.
Creating or replacing default objects for QM_2.
Default objects statistics : 29 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

G:\>crtmqm QM_3
MQSeries queue manager created.
Creating or replacing default objects for QM_3.
Default objects statistics : 29 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

G:\>crtmqm QM_4
MQSeries queue manager created.
Creating or replacing default objects for QM_4.
Default objects statistics : 29 created. 0 replaced. 0 failed.
Completing setup.
Setup completed.

G:\>strmqm QM_1
MQSeries queue manager 'QM_1' started.

G:\>strmqm QM_2
MQSeries queue manager 'QM_2' started.

G:\>strmqm QM_3
MQSeries queue manager 'QM_3' started.

G:\>strmqm QM_4
MQSeries queue manager 'QM_4' started.

G:\>runmqsc QM_1 < QM_1.cfg
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * This ALTER QMGR needs to run early. The scripts for QM_1 & QM_3
: * therefore need to be RUN first!

1 : ALTER QMGR REPOS(CL_MQ51)
AMQ8005: MQSeries queue manager changed.

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of
: * the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard
: * DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)
© Copyright IBM Corp. 1999 217

REPLACE
:

2 : DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1417)') CLUSTER(CL_MQ51) REPLACE

AMQ8014: MQSeries channel created.
:

3 : DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1415)') CLUSTER(CL_MQ51)

NETPRTY(0) REPLACE
AMQ8014: MQSeries channel created.

:
4 : DEFINE QLOCAL(TQ_1) REPLACE

AMQ8006: MQSeries queue created.
:

5 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE
AMQ8006: MQSeries queue created.

:
:

5 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

G:\>runmqsc QM_2 < QM_2.cfg
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * Do not run this script until AFTER the scripts for QM_1 and QM_3
have been run!

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of

the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard
: * DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

REPLACE
:

1 : DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1415)') CLUSTER(CL_MQ51) REPLACE

AMQ8014: MQSeries channel created.
:

2 : DEFINE CHANNEL(TO_QM2) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1416)') CLUSTER(CL_MQ51)
NETPRTY(0) REPLACE

AMQ8014: MQSeries channel created.
:

3 : DEFINE QLOCAL(TQ_2) REPLACE
AMQ8006: MQSeries queue created.

:
4 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE

AMQ8006: MQSeries queue created.
:

5 : DEFINE QLOCAL(CLQ_ACROSS_2_3_4) CLUSTER(CL_MQ51) REPLACE
AMQ8006: MQSeries queue created.

:
5 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.
218 MQSeries Version 5.1 Administration and Programming Examples

G:\>runmqsc QM_3 < QM_3.cfg
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * This ALTER QMGR needs to run early. The scripts for QM_1 & QM_3
therefore need to be RUN first!

1 : ALTER QMGR REPOS(CL_MQ51)
AMQ8005: MQSeries queue manager changed.

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of

the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard
: * DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

REPLACE
:

2 : DEFINE CHANNEL(TO_QM1) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1415)') CLUSTER(CL_MQ51) REPLACE

AMQ8014: MQSeries channel created.
:

3 : DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1417)') CLUSTER(CL_MQ51)
NETPRTY(0) REPLACE

AMQ8014: MQSeries channel created.
:

4 : DEFINE QLOCAL(TQ_3) REPLACE
AMQ8006: MQSeries queue created.

:
5 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE

AMQ8006: MQSeries queue created.
:

6 : DEFINE QLOCAL(CLQ_ACROSS_2_3_4) CLUSTER(CL_MQ51) REPLACE
AMQ8006: MQSeries queue created.

:
:

6 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.

G:\>runmqsc QM_4 < QM_4.cfg
04L1830,5639-B43 (C) Copyright IBM Corp. 1994, 1998. ALL RIGHTS RESERVED.

Starting MQSeries Commands.

: * Do not run this script until AFTER the scripts for QM_1 and QM_3
have been run!

:
: * This is the channel which would be created if you checked
: * "Create Server Connection Channel to allow remote administration of

the queue manager over TCP/IP"
: * in Step 3 of the Create Queue Manager wizard
: * DEFINE CHANNEL(SYSTEM.ADMIN.SVRCONN) CHLTYPE(SVRCONN) TRPTYPE(TCP)

REPLACE
:

1 : DEFINE CHANNEL(TO_QM3) CHLTYPE(CLUSSDR) TRPTYPE(TCP)
CONNAME('wtr05246.itso.ral.ibm.com(1417)') CLUSTER(CL_MQ51) REPLACE

AMQ8014: MQSeries channel created.
Appendix B. Log File Created by crt_str_all 219

:
2 : DEFINE CHANNEL(TO_QM4) CHLTYPE(CLUSRCVR) TRPTYPE(TCP)

CONNAME('wtr05246.itso.ral.ibm.com(1418)') CLUSTER(CL_MQ51)
NETPRTY(0) REPLACE

AMQ8014: MQSeries channel created.
:

3 : DEFINE QLOCAL(TQ_4) REPLACE
AMQ8006: MQSeries queue created.

:
4 : DEFINE QLOCAL(CLQ_1) CLUSTER(CL_MQ51) REPLACE

AMQ8006: MQSeries queue created.
:

5 : DEFINE QLOCAL(CLQ_ACROSS_2_3_4) CLUSTER(CL_MQ51) REPLACE
AMQ8006: MQSeries queue created.

:
:

5 MQSC commands read.
No commands have a syntax error.
All valid MQSC commands were processed.
220 MQSeries Version 5.1 Administration and Programming Examples

Appendix C. Source Code for clusput.c

/**/
/* */
/* Original Program name: AMQSPUT0 */
/* */
/* Description: Sample C program that puts messages to */
/* a message queue (example using MQPUT) */
/* */
/**/
/* */
/* AMQSPUT0 has 2 parameters */
/* - the name of the target queue (required) */
/* - queue manager name (optional) */
/* */
/**/
/* This has been altered for the MQSeries V5.1 update class */
/* MQOO_BIND_NOT_FIXED has been added to the open options. */
/* This allows us to have the cluster load balancing spread */
/* multiple PUTs (following the MQOO_BIND_NOT_FIXED open) */
/* across multiple queues in the cluster (if appropriate */
/* queues have been defined). */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* includes for MQI */
#include "cmqc.h"

int main(int argc, char **argv)
{
/* Declare file and character for sample input */
FILE *fp;

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQPMO pmo = {MQPMO_DEFAULT}; /* put message options */

/** note, sample uses defaults where it can **/

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
© Copyright IBM Corp. 1999 221

MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQLONG messlen; /* message length */
char buffer[100]; /* message buffer */
char QMName[50]; /* queue manager name */

printf("MQ V5.1 Update Class: Workload-Balance enabled PUT\n");
if (argc < 2)
{
printf("Required parameter missing - queue name\n");
exit(99);

}

/**/
/* */
/* Connect to queue manager */
/* */
/**/
QMName[0] = 0; /* default */
if (argc > 2)
strcpy(QMName, argv[2]);

MQCONN(QMName, /* queue manager */
&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED)
{
printf("MQCONN ended with reason code %ld\n", CReason);
exit((int)CReason);

}

/**/
/* */
/* Use parameter as the name of the target queue */
/* */
/**/
strncpy(od.ObjectName, argv[1], (size_t)MQ_Q_NAME_LENGTH);
printf("target queue is %s\n", od.ObjectName);

/**/
/* */
/* Open the target message queue for output */
222 MQSeries Version 5.1 Administration and Programming Examples

/* */
/**/
O_options = MQOO_OUTPUT /* open queue for output */

+ MQOO_FAIL_IF_QUIESCING /* but not if MQM stopping */
+ MQOO_BIND_NOT_FIXED; /* put to multiple clustered */

/* queues */
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
&Hobj, /* object handle */
&OpenCode, /* MQOPEN completion code */
&Reason); /* reason code */

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE)
{
printf("MQOPEN ended with reason code %ld\n", Reason);

}

if (OpenCode == MQCC_FAILED)
{
printf("unable to open queue for output\n");

}

/**/
/* */
/* Read lines from the file and put them to the message queue */
/* Loop until null line or end of file, or there is a failure */
/* */
/**/
CompCode = OpenCode; /* use MQOPEN result for initial test */
fp = stdin;

memcpy(md.Format, /* character string format */
MQFMT_STRING, (size_t)MQ_FORMAT_LENGTH);

pmo.Options |= MQPMO_NEW_MSG_ID;

while (CompCode != MQCC_FAILED)
{
if (fgets(buffer, sizeof(buffer), fp) != NULL)
{
messlen = strlen(buffer); /* length without null */
if (buffer[messlen-1] == '\n') /* last char is a new-line */
{
buffer[messlen-1] = '\0'; /* replace new-line with null */
--messlen; /* reduce buffer length */
Appendix C. Source Code for clusput.c 223

}
}
else messlen = 0; /* treat EOF same as null line */

/**/
/* */
/* Put each buffer to the message queue */
/* */
/**/
if (messlen > 0)
{
MQPUT(Hcon, /* connection handle */

Hobj, /* object handle */
&md, /* message descriptor */
&pmo, /* default options (datagram) */
messlen, /* message length */
buffer, /* message buffer */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf("MQPUT ended with reason code %ld\n", Reason);

}
}
else /* satisfy end condition when empty line is read */
CompCode = MQCC_FAILED;

}

/**/
/* */
/* Close the target queue (if it was opened) */
/* */
/**/
if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{

224 MQSeries Version 5.1 Administration and Programming Examples

printf("MQCLOSE ended with reason code %ld\n", Reason);
}

}

/**/
/* */
/* Disconnect from MQM if not already connected */
/* */
/**/
if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf("MQDISC ended with reason code %ld\n", Reason);

}
}

/**/
/* */
/* END OF AMQSPUT0 */
/* */
/**/
printf("MQ V5.1 Update Class: Workload-Balance enabled PUT: end\n");
return(0);

}

Appendix C. Source Code for clusput.c 225

226 MQSeries Version 5.1 Administration and Programming Examples

Appendix D. Source Code for fastget.c

/**/
/* */
/* Program name: AMQSGET0 */
/* */
/* Description: Sample C program that gets messages from */
/* a message queue (example using MQGET) */
/* */
/* Statement: Licensed Materials - Property of IBM */
/* */
/* 04L1773, 5765-B73 */
/* 04L1802, 5639-B42 */
/* 04L1788, 5765-B74 */
/* 04L1816, 5765-B75 */
/* 04L1830, 5639-B43 */
/* (C) Copyright IBM Corp. 1994, 1998 */
/* */
/**/
/* */
/* Function: */
/* */
/* */
/* AMQSGET0 is a sample C program to get messages from a */
/* message queue, and is an example of MQGET. */
/* */
/* -- sample reads from message queue named in the parameter */
/* */
/* -- displays the contents of the message queue, */
/* assuming each message data to represent a line of */
/* text to be written */
/* */
/* messages are removed from the queue */
/* */
/* -- writes a message for each MQI reason other than */
/* MQRC_NONE; stops if there is a MQI completion code */
/* of MQCC_FAILED */
/* */
/* */
/* Program logic: */
/* Take name of input queue from the parameter */
/* MQOPEN queue for INPUT */
/* while no MQI failures, */
/* . MQGET next message, remove from queue */
/* . print the result */
/* . (no message available counts as failure, and loop ends) */
© Copyright IBM Corp. 1999 227

/* MQCLOSE the subject queue */
/* */
/* */
/**/
/* */
/* AMQSGET0 has 2 parameters - */
/* - the name of the message queue (required) */
/* - the queue manager name (optional) */
/* */
/**/
/* This has been altered for the MQSeries V5.1 update class */
/* MQGMO_ACCEPT_TRUNCATED_MSG has been added to the Get Msg Options */
/* which ensures we can always read messages from the queue */
/* even if they are too long for our buffer. */
/* USEFUL as a simple way to clear a queue. */
/* gmo.WaitInterval has been set to 1000, which means the program */
/* now only waits for 1 second after the queue is empty */
/* before it ends. Good for impatient lab students!!! */
/**/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/* includes for MQI */
#include <cmqc.h>

int main(int argc, char **argv)
{

/* Declare MQI structures needed */
MQOD od = {MQOD_DEFAULT}; /* Object Descriptor */
MQMD md = {MQMD_DEFAULT}; /* Message Descriptor */
MQGMO gmo = {MQGMO_DEFAULT}; /* get message options */

/** note, sample uses defaults where it can **/

MQHCONN Hcon; /* connection handle */
MQHOBJ Hobj; /* object handle */
MQLONG O_options; /* MQOPEN options */
MQLONG C_options; /* MQCLOSE options */
MQLONG CompCode; /* completion code */
MQLONG OpenCode; /* MQOPEN completion code */
MQLONG Reason; /* reason code */
MQLONG CReason; /* reason code for MQCONN */
MQBYTE buffer[101]; /* message buffer */
MQLONG buflen; /* buffer length */
MQLONG messlen; /* message length received */
MQCHAR48 QMName; /* queue manager name */
228 MQSeries Version 5.1 Administration and Programming Examples

printf("MQ V5.1 Update Class: fast GET which ALWAYS clears the
queue\n");

if (argc < 2)
{
printf("Required parameter missing - queue name\n");
exit(99);

}

/**/
/* */
/* Create object descriptor for subject queue */
/* */
/**/
strcpy(od.ObjectName, argv[1]);
QMName[0] = 0; /* default */
if (argc > 2)
strcpy(QMName, argv[2]);

/**/
/* */
/* Connect to queue manager */
/* */
/**/
MQCONN(QMName, /* queue manager */

&Hcon, /* connection handle */
&CompCode, /* completion code */
&CReason); /* reason code */

/* report reason and stop if it failed */
if (CompCode == MQCC_FAILED)
{
printf("MQCONN ended with reason code %ld\n", CReason);
exit((int)CReason);

}

/**/
/* */
/* Open the named message queue for input; exclusive or shared */
/* use of the queue is controlled by the queue definition here */
/* */
/**/
O_options = MQOO_INPUT_AS_Q_DEF /* open queue for input */

+ MQOO_FAIL_IF_QUIESCING; /* but not if MQM stopping */
MQOPEN(Hcon, /* connection handle */

&od, /* object descriptor for queue */
O_options, /* open options */
Appendix D. Source Code for fastget.c 229

&Hobj, /* object handle */
&OpenCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any; stop if failed */
if (Reason != MQRC_NONE)
{
printf("MQOPEN ended with reason code %ld\n", Reason);

}

if (OpenCode == MQCC_FAILED)
{
printf("unable to open queue for input\n");

}

/**/
/* */
/* Get messages from the message queue */
/* Loop until there is a failure */
/* */
/**/
CompCode = OpenCode; /* use MQOPEN result for initial test */
gmo.Version = MQGMO_VERSION_2; /* Avoid need to reset Message */
gmo.MatchOptions = MQMO_NONE; /* ID and Correlation ID after */

/* every MQGET */
gmo.Options = MQGMO_WAIT /* wait for new messages */

+ MQGMO_CONVERT; /* convert if necessary */
+ MQGMO_ACCEPT_TRUNCATED_MSG; /* we always want to read the msg */
gmo.WaitInterval = 1000; /* 1 second limit for waiting */

while (CompCode != MQCC_FAILED)
{
buflen = sizeof(buffer) - 1; /* buffer size available for GET */

/**/
/* */
/* MQGET sets Encoding and CodedCharSetId to the values in */
/* the message returned, so these fields should be reset to */
/* the default values before every call, as MQGMO_CONVERT is */
/* specified. */
/* */
/**/

md.Encoding = MQENC_NATIVE;
md.CodedCharSetId = MQCCSI_Q_MGR;

MQGET(Hcon, /* connection handle */
230 MQSeries Version 5.1 Administration and Programming Examples

Hobj, /* object handle */
&md, /* message descriptor */
&gmo, /* get message options */
buflen, /* buffer length */
buffer, /* message buffer */
&messlen, /* message length */
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
if (Reason == MQRC_NO_MSG_AVAILABLE)
{ /* special report for normal end */
printf("no more messages\n");

}
else /* general report for other reasons */
{
printf("MQGET ended with reason code %ld\n", Reason);

/* treat truncated message as a failure for this sample */
if (Reason == MQRC_TRUNCATED_MSG_FAILED)
{
CompCode = MQCC_FAILED;

}
}

}

/**/
/* Display each message received */
/**/
if (CompCode != MQCC_FAILED)
{
buffer[messlen] = '\0'; /* add terminator */
printf("message <%s>\n", buffer);

}
}

/**/
/* */
/* Close the source queue (if it was opened) */
/* */
/**/
if (OpenCode != MQCC_FAILED)
{
C_options = 0; /* no close options */
MQCLOSE(Hcon, /* connection handle */
Appendix D. Source Code for fastget.c 231

&Hobj, /* object handle */
C_options,
&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf("MQCLOSE ended with reason code %ld\n", Reason);

}
}

/**/
/* */
/* Disconnect from MQM if not already connected */
/* */
/**/
if (CReason != MQRC_ALREADY_CONNECTED)
{
MQDISC(&Hcon, /* connection handle */

&CompCode, /* completion code */
&Reason); /* reason code */

/* report reason, if any */
if (Reason != MQRC_NONE)
{
printf("MQDISC ended with reason code %ld\n", Reason);

}
}

/**/
/* */
/* END OF AMQSGET0 */
/* */
/**/
printf("Sample AMQSGET0 end\n");
return(0);

}

232 MQSeries Version 5.1 Administration and Programming Examples

Appendix E. MQSeries Processes

With MQSeries installed but no queue managers defined, expect to see the
following MQSeries related processes in the NT Task Manager list:

amqsrvn.exe com server for mmc

amqmtbrn.exe Task bar routine for Services snap-in to MMC

amqsvc.exe MQSeries NT Service

As each queue manager is started, expect to see the following set of
processes:

amqhasmn.exe Logger for circular logging or

amqharmn Logger for linear logging

amqpcsea.exe Command Server

amqrrmfa.exe Repository process (if cluster)

amqzlaa0.exe Local queue manager agentt

amqzllp0.exe Checkpoint process

amqzxma0.exe Execution controller

runmqchi.exe Channel Initiator

runmqlsr.exe Listener

amqxssvn.exe Shared memory servers -- there may be multiples of these
per queue manager
© Copyright IBM Corp. 1999 233

234 MQSeries Version 5.1 Administration and Programming Examples

Appendix F. Diskette Contents

This redbook also contains additional material in diskette format. The diskette
that accompanies this redbook contains the following:

Directory \ File Name Description

\Ch02 Chapter 2, “About Clusters” on page 7

qm1.in Figure 19 on page 22, definitions for QM_1

qm2.in Figure 20 on page 22, definitions for QM_2

qm3.in Figure 21 on page 22, definitions for QM_3

\Ch05 Chapter 5, “Creating a Cluster with Scripts” on page 95

QM_1.cfg Configuration for QM_1, Figure 107 on page 98

QM_2.cfg Configuration for QM_2, Figure 108 on page 99

QM_3.cfg Configuration for QM_3, Figure 109 on page 100

QM_4.cfg Configuration for QM_4, Figure 110 on page 101

crt_str_all.bat BAT file that builds cluster CL_MQ51, Figure 111 on page 102

cft_str_all.log Appendix B, “Log File Created by crt_str_all” on page 217

end_dlt_all.bat BAT file that stops and destroys cluster CL_MQ51, Figure 112 on page 103

\Ch06 Chapter 6, “Workload Management” on page 107

clusput.c Source and executable of modified amqsput0.c to put messages with
BIND_NOT_FIXED, Appendix C, “Source Code for clusput.c” on page 221

clusput.exe

fastget.c Source code and executable of modified amqsget0.c that reads messages
even if they are too long for the buffer, Appendix D, “Source Code for
fastget.c” on page 227fastget.exe

str_all.bat BAT file that starts four queue managers and their listeners, Figure 114 on
page 110

end_all.bat BAT file that stops for queue managers and their listeners, Figure 115 on
page 110

\WLExit Chapter 6.3, “Writing a Workload Management Exit” on page 116

WLlogger.c Workload management exit sample described in 6.3.2, “Commented
Program Listing for Exit WLlogger.c” on page 118

WLlogger.cfg Sample to alter queue manager to support workload exit, see page 116
© Copyright IBM Corp. 1999 235

F.1 Locating the additional material on the Internet

The diskette associated with this redbook is also available in softcopy on the
Internet from the IBM Redbooks Web server. Point your Web browser to:

ftp://www.redbooks.ibm.com/redbooks/SG245849/

Alternatively, you can go to the IBM Redbooks Web site at:

ftp://www.redbooks.ibm.com/

Select the Additional materials and open the directory that corresponds with
the redbook form number.

WLlogger_comp.bat BAT file to compile the exit and move it into the exits directory

Ch08 Chapter 8, “Web Administration” on page 147

Setup_QM_1.mqs Inner script to set up QM_1

Setup_QM_2.mqs Inner script to set up QM_2

Setup_QM_3.mqs Inner script to set up QM_3

Setup_QM_4.mps Inner script to set up QM_4

Add_cluster_Q.mps Script to create a cluster queue on three queue managers

Setup_4_Q<grs.mqs Outer script that calls the above inner scripts

Visual Basic Files

amqsgen.exe A VisualBasic Program that generates messages

VB40032.DLL You need this file to run amqsgen; put it in \WINNT\SYSTEM32

Ch10 Chapter 10, “File Transfer Programs” on page 167

mqfm_defs.h Header file; see 10.4, “mqfm_defs.h” on page 173

putMsg.c Puts an “instruction message”; see 10.5, “putMsg.c” on page 174

putFile.c Puts a file; see 10.6, “putFile.c” on page 178

getFile.c Gets a file; see 10.7, “getFile.c” on page 192

Ch12 Chapter 12, “Using Dynamic Queues” on page 209

dynq4rep.c 12.1, “Temporary Dynamic Queues” on page 209

perq4rep.c 12.3, “Permanent Dynamic Queues” on page 213

Directory \ File Name Description
236 MQSeries Version 5.1 Administration and Programming Examples

ftp://www.redbooks.ibm.com/redbooks/
ftp://www.redbooks.ibm.com/redbooks/

Appendix G. Special Notices

This publication is intended to help application designers. programmers and
system administrators to utilize the functions of MQSeries Version 5.1. The
information in this publication is not intended as the specification of any
programming interfaces that are provided by MQSeries Versopn 5.1. See the
PUBLICATIONS section of the IBM Programming Announcement for
MQSeries Version 5.1 for more information about what publications are
considered to be product documentation.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not
intended to state or imply that only IBM's product, program, or service may be
used. Any functionally equivalent program that does not infringe any of IBM's
intellectual property rights may be used instead of the IBM product, program
or service.

Information in this book was developed in conjunction with use of the
equipment specified, and is limited in application to those specific hardware
and software products and levels.

IBM may have patents or pending patent applications covering subject matter
in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to the IBM
Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY
10504-1785.

Licensees of this program who wish to have information about it for the
purpose of enabling: (i) the exchange of information between independently
created programs and other programs (including this one) and (ii) the mutual
use of the information which has been exchanged, should contact IBM
Corporation, Dept. 600A, Mail Drop 1329, Somers, NY 10589 USA.

Such information may be available, subject to appropriate terms and
conditions, including in some cases, payment of a fee.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The information about non-IBM
("vendor") products in this manual has been supplied by the vendor and IBM
assumes no responsibility for its accuracy or completeness. The use of this
information or the implementation of any of these techniques is a customer
responsibility and depends on the customer's ability to evaluate and integrate
them into the customer's operational environment. While each item may have
© Copyright IBM Corp. 1999 237

been reviewed by IBM for accuracy in a specific situation, there is no
guarantee that the same or similar results will be obtained elsewhere.
Customers attempting to adapt these techniques to their own environments
do so at their own risk.

Any pointers in this publication to external Web sites are provided for
convenience only and do not in any manner serve as an endorsement of
these Web sites.

The following terms are trademarks of the International Business Machines
Corporation in the United States and/or other countries:

The following terms are trademarks of other companies:

C-bus is a trademark of Corollary, Inc. in the United States and/or other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and/or other
countries.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States and/or other countries.

PC Direct is a trademark of Ziff Communications Company in the United
States and/or other countries and is used by IBM Corporation under license.

ActionMedia, LANDesk, MMX, Pentium and ProShare are trademarks of Intel
Corporation in the United States and/or other countries.

UNIX is a registered trademark in the United States and/or other countries
licensed exclusively through X/Open Company Limited.

AIX AS/400
CICS DB2
FFST IBM
IMS MQ
MQSeries MVS/ESA
Netfinity Operating System/2
OS/2 OS/390
OS/400 Parallel Sysplex
QMF RS/6000
S/390 SP
SP1 SP2
SupportPac System/390
VisualAge
238 MQSeries Version 5.1 Administration and Programming Examples

SET and the SET logo are trademarks owned by SET Secure Electronic
Transaction LLC.

Other company, product, and service names may be trademarks or service
marks of others.
Appendix G. Special Notices 239

240 MQSeries Version 5.1 Administration and Programming Examples

Appendix H. Related Publications

The publications listed in this section are considered particularly suitable for a
more detailed discussion of the topics covered in this redbook.

H.1 International Technical Support Organization Publications

For information on ordering these ITSO publications see “How to Get IBM
Redbooks” on page 243.

• MQSeries Version 5 Programming Examples, SG24-5214

• MQSeries Backup and Recovery, SG24-5222

• MQSeries Security: Example of Using a Channel Security Exit, Encryption
and Decryption, SG24-5306

• Using MQSeries on the AS/400, SG24-5236

• MQSeries for Windows Version 2.1 in a Mobile Environment, SG24-2103

• Connecting the Enterprise to the Internet with MQSeries and VisualAge
for Java, SG24-2144

• Internet Application Development with MQSeries and Java, SG24-4896

• Application Development with VisualAge for Smalltalk and MQSeries,
SG24-2117

• Examples of Using MQSeries on WWW, SG24-4882

• Using the MQSeries Integrator Version 1.0, SG24-5386

H.2 Redbooks on CD-ROMs

Redbooks are also available on the following CD-ROMs. Click the CD-ROMs
button at http://www.redbooks.ibm.com/ for information about all the CD-ROMs
offered, updates and formats.

CD-ROM Title Collection Kit
Number

System/390 Redbooks Collection SK2T-2177

Networking and Systems Management Redbooks Collection SK2T-6022

Transaction Processing and Data Management Redbooks Collection SK2T-8038

Lotus Redbooks Collection SK2T-8039

Tivoli Redbooks Collection SK2T-8044

AS/400 Redbooks Collection SK2T-2849

Netfinity Hardware and Software Redbooks Collection SK2T-8046

IBM Enterprise Storage and Systems Management Solutions SK3T-3694
© Copyright IBM Corp. 1999 241

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

H.3 Other Publications

These publications are also relevant as further information sources:

• MQSeries Queue Manager Clusters, SC34-5349

• MQSeries Command Reference, SC33-1369

• MQSeries System Administration, SC33-1873

• MQSeries Intercommunication, SC33-1872

• MQSeries Application Programming Guide, SC33-0807

• MQSeries Application Programming Reference, SC33-1673

• MQSeries Using C++, SC33-1877

• MQSeries Using Java, SC34-5456
242 MQSeries Version 5.1 Administration and Programming Examples

How to Get IBM Redbooks

This section explains how both customers and IBM employees can find out about ITSO redbooks,
redpieces, and CD-ROMs. A form for ordering books and CD-ROMs by fax or e-mail is also provided.

• Redbooks Web Site http://www.redbooks.ibm.com/

Search for, view, download, or order hardcopy/CD-ROM redbooks from the redbooks Web site. Also
read redpieces and download additional materials (code samples or diskette/CD-ROM images) from
this redbooks site.

Redpieces are redbooks in progress; not all redbooks become redpieces and sometimes just a few
chapters will be published this way. The intent is to get the information out much quicker than the
formal publishing process allows.

• E-mail Orders

Send orders by e-mail including information from the redbooks fax order form to:

• Telephone Orders

• Fax Orders

This information was current at the time of publication, but is continually subject to change. The latest
information may be found at the redbooks Web site.

In United States
Outside North America

e-mail address
usib6fpl@ibmmail.com
Contact information is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada (toll free)
Outside North America

1-800-879-2755
1-800-IBM-4YOU
Country coordinator phone number is in the “How to Order”
section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

United States (toll free)
Canada
Outside North America

1-800-445-9269
1-403-267-4455
Fax phone number is in the “How to Order” section at this site:
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM employees may register for information on workshops, residencies, and redbooks by accessing
the IBM Intranet Web site at http://w3.itso.ibm.com/ and clicking the ITSO Mailing List button.
Look in the Materials repository for workshops, presentations, papers, and Web pages developed
and written by the ITSO technical professionals; click the Additional Materials button. Employees may
access MyNews at http://w3.ibm.com/ for redbook, residency, and workshop announcements.

IBM Intranet for Employees
© Copyright IBM Corp. 1999 243

http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.redbooks.ibm.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://w3.itso.ibm.com/
http://w3.ibm.com/
mailto:usib6fpl@ibmmail.com
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl
http://www.elink.ibmlink.ibm.com/pbl/pbl

IBM Redbooks Fax Order Form

Please send me the following:

We accept American Express, Diners, Eurocard, Master Card, and Visa. Payment by credit card not
available in all countries. Signature mandatory for credit card payment.

Title Order Number Quantity

First name Last name

Company

Address

City Postal code

Telephone number Telefax number VAT number

Invoice to customer number

Country

Credit card number

Credit card expiration date SignatureCard issued to
244 MQSeries Version 5.1 Administration and Programming Examples

List of Abbreviations

ADSI Active Directory Service
Interface

API Application Programming
Interface

BMP Batch Message Processing,
region (IMS)

COA Confirmation on Arrival

COD Confirmation on Delivery

COM Component Object Model

CSD Correctional Service Diskette

DHCP Dynamic Host Configuration
Protocol

DNS Domain Name System

EOF End of File

FIFO first in, first out

GIF Graphic Interchange Format

GUI Graphical User Interface

HPFS High Performance File System

HTTP HyperText Markup Language

IBM International Business
Machines Corporation

IP Internet Protocol

ITSO International Technical Support
Organization

IVP Installation Verification
Program

JDK Java Development Kit

LSX Lotus Script Extension

MCA Message Channel Agent

MMC Microsoft Management
Console

MPP Message Processing Program

MQ Message Queuing

MQI Message Queuing Interface
© Copyright IBM Corp. 1999
MQM MQ Queue Manager

MQMD MQ Message Descriptor
(message header)

MQSI MQSeries Integrator

MVS Multiple Virtual Storage

OAM Object Acccess Manager

ODBC Open Database Connectivity

OS/2 Operating System/2

OS/400 Operating System for AS/400

PC Personal Computer

PCF Programmable Command
Format

PDF Portable Document Format

PSID Page Set Identifier

SAM Security Account Manager

SID Security Identifier

TCP Transmission Control Protocol

UDB Universal Database

UR Unit of Recovery

URL Uniform Resource Locator

VSAM Virtual Storage Access Method

WWW World Wide Web
245

246 MQSeries Version 5.1 Administration and Programming Examples

Index

Numerics
127.0.0.1 26
1414 39
2042 128
8081 149
90 days 17

A
AccountingToken 203
ActiveX 3, 33
Add to Chart 159
adding a trigger monitor 139
administration

remote 145
administration interfaces 123

MQSeries Explorer 45
MQSeries Services 47
RUNMQSC 95
Web administration 150

administrative error 10
Adobe Acrobat 34
ADSI 34
advertise queue 28
advertise queue manager 18, 27
alert message 142
Alert Monitor 48, 132, 142
ALTER QMGR 27
AMQ7077 127
AMQ8118 127
AMQ8441 31
AMQ9509 128
amqerr01.log 128
amqpcard.exe 42
amqsgbr 82
amqsgen 162, 164
amqsget 163
amqsput 82, 108, 113, 115
amqsput.exe 107
API calls 49
API Exerciser 38, 49
arrival rate 159
AS/400 2
automatic definition

channels 12, 19
CLUSSDRA 32
© Copyright IBM Corp. 1999
cluster xmit queue 8
communication channels 7
dynamic channels 12
message channels 14
sender channels 76

automatic start
of channel initiator 128, 144
of command server 132
of listener 60, 109
of MQ components 124
of processes 47, 124
of queue manager 57

automatic startup 139
automatically create cluster 101
autonomous queue manager 8
availability 10

B
BAT files 95
bind 15, 108
bind not fixed 107, 108, 114, 223
bind on open 111
boot time 47, 57, 124, 133
browse

message browser 82
browse messages

MQExplorer 82, 89, 113, 162
using MQExplorer 45

browser 147
interface 33

business integration 1
business strategies 2

C
channel

CLUSRCVR 18
CLUSSDR 18
cluster 32
cluster default 105
cluster receiver 105
cluster sender 105
communication 7
CONNAME 97
default configuration 39
define 20
define CLUSSDR 98
247

define CUSRCVR 98
define SVRCONN 98
definition 55
display 61
dynamic 12
in MQExplorer 130
inbound 127
manage 124
matching pair 24
name cluster channel 67
repository 129
server connection 39
state 121
status 31
stop receiver 164
types 17, 61

channel initiator 48, 127, 144, 147
start 128

channel names 39
channel pairs 77
channel program 29
circular logging 57
client identification 203
clusput 108, 114
clusput.c 109

source code 221
clusput.exe 107
CLUSRCVR 17, 18, 19, 27, 77, 105

define 98, 215
definition 20

CLUSSDR 17, 18, 19, 27, 105
define 20, 98, 215

CLUSSDRA 32
CLUSSDRB 32
cluster 3, 7, 47, 55, 95

administration 3
behavior 164
channel 32
commands 26
concept 11
default configuration 39
DHCP 39
example 18, 20, 21, 24
fewer definitions 24
how it works 17
summary 12
transmission queue 8, 105
why? 7, 8
with two networks 24

workload exit 15
cluster objects 104
cluster receiver channel 17, 18, 129
cluster sender channel 17, 18, 129
cluster transmission queue 14
clustering 14
clusters

benefits for administration 7
technology 12

cluster-wide administration 7
CLWLDATA 116
CLWLEXIT 116
COA 213
COD 213
command line 144, 167
command queue 61, 105
command server 47, 48, 127, 132
commands 123

clear display 163
clusters 26, 27
compile 116
crtmqm 126
display CLUSQMGR 30
endmqm 147
remote administration 147
runmqsc 29, 97
scmmqm 47, 124
start channel initiator 128
start listener 127
strmqm 126
Web administration 147, 151

communication
between queue managers 12, 28
channel 7

compile
workload exit 116

Component Object Model 3
components 127

failing 3
of a cluster 13
start a boot time 133

configuration scripts 95
CONNAME 26

cluster channels 27
display 31
example 20
loopback 26

connect
applications 1
248 MQSeries Version 5.1 Administration and Programming Examples

computers using default configuration 38
machines 7
MQCONNX 33
MQM to cluster 129
to queue manager 175
using LAN 16
using SNA 24

connection handle 107, 174
connection name 24, 31

cluster receiver 67, 73
loop back 97

construct scripts 147
control commands 124
controlling the workflow 108
create

channels automatically 7
cluster 63
cluster automatically 3
cluster objects automatically 19
cluster queue 83
cluster with MQExplorer 55
cluster with runmqsc 95
default configuration 39, 40
instances of queue 86
listener 60, 104
local queue 79
MQSeries objects 104
queue manager 28, 57, 97, 126
queue manager (MQ Services) 137
queue manager (MQExplorer) 57
server connection channel 57
trigger monitor service 139
Web administration script 155

Create Cluster Wizard 64
crtmqm 126

fails 127
custom install 34, 148

D
data stores 124
dead-letter queue 14, 17, 57
default

configuration 33, 38
installation 34
installation directory 34
message distribution 15
objects 105
open option 108

Performance Monitor 162
port 27
port for Web admin 149
public script 155
queue manager 148, 152

check box 57
queue manager required 147
routing 17
trigger queue 139

Default Configuration 38, 39
objects created 39
will fail 39

DEFBIND 108
define

CLUSRCVR 27
CLUSSDR 27
cluster channels 19, 130
connections between queue managers 77
dynamic channels 13
fewer resources 7
QLOCAL 28
queue instances 87
recovery options 139
recovery procedure 48
remote queue 7
what starts at boot time 47

definitions reduced 24
DEFTYPE 32
delete cluster 90
dependencies (installation) 34
DestinationChosen 116
DHCP 39
disconnect

from queue manager 177
diskette contents 235
display

CLUSQMGR 30
queues 29

Display Cluster Information (1) 31
distributed messaging 13
DNS 39, 46
documentation 34
domain name

default configuration 39
dspmqaut 208
dynamic channels 12, 13
dynamic queues 209
DynamicQName 209
249

E
Edit Chart Line 162
environment variables 203
Event Services 4
exception report 213
expiry report 213
explicit remote queues 7

F
failure 10
fastget 109, 110
fastget.c

source code 227
file transfer mechanism 167
File Transfer Programs 167
full repository 17

G
getFile.c 167, 192
getting messages 89
graphical tools 3
graphs 159

H
help 33

HTML 34
Web Administration 151

hhupd.exe 34
hide system queues 81
HTML Help 34
http //hostname 8081 149

I
inbound channels 127
inconsistencies 145
Information Center 33, 38
inner script 155
installation 34

verify 42
interactive mode 45, 47
Internet Explorer 34
IP port 67

J
Java 4

AWT upgrade 148

programming interface 4
Join Cluster Wizard 71

L
linear logging 57
listener 28, 127

comments 104
managed by MQExplorer 104
start 127

load balancing 8
local cluster queue 115
local queue 14
log on

Web Administration 149
loop back address 26, 31, 97

M
machine name 67
manual startup 133
MC73 55
message

broker 1
browser 45, 82, 124
channel 13, 14
channel agent 13
queue size 3

message descriptor 52
Microsoft

Internet Explorer 124, 148
Management Console 33, 34, 124
V5 compiler 33
Virtual Machine 34

MMC 33, 34, 47
monitor queue depth 159
MQ client 19
MQCO_DELETE 214
MQCO_DELETE_PURGE 214
mqfm_defs.h 167, 173
MQGET 15, 212
mqm security group 148
MQOO_BIND_AS_Q_DEF 108
MQOO_BIND_NOT_FIXED 15, 107, 108
MQOO_BIND_ON_OPEN 15, 108
MQOPEN 14

bindings 108
MQPUT 14
MQPUT1 211
MQS.INI 135
250 MQSeries Version 5.1 Administration and Programming Examples

MQSeries 1
API Exerciser 49
for AIX 2
for AS/400 2, 4
for HP-UX 2
for OS/2 Warp 2
for OS/390 2
for Sun Solaris 2
for Windows NT 2
manuals 38
Menu 35
objects 45, 124
processes 47, 124
security 203
software 1
Version 2.1 1
Version 5.1 1, 2

features 2
MQSeries Explorer 38, 45, 123, 124
MQSeries Family 1
MQSeries First Steps 38
MQSeries for Windows NT 33
MQSeries Information Center 33
MQSeries Integrator 1
MQSeries Postcard 42
MQSeries processes 233
MQSeries Services 47, 123, 124

described 132
objects 48

MQSeries Workflow 2
MQWXP structure 116
multiple NT threads 33
multiple queues 10
MVS/ESA 1, 24

N
naming problems 10
Netscape Navigator 124, 148
NON 213
non-clustering 24
novice programmers 49

O
OAM 203
Object Access Manager 203
object in use 128
ObjectName 209
open option 15

OS/390 2
outbound channels 127
outer script 154

P
partial repository 17
path length 33
PCF 131
PCF commands 47
Performance Monitor 3, 33, 159
permanent channels 13
permanent dynamic queues 209
PERMDYN 214
platforms 2
PON 213
port 67

UNIX 63
port numbers 63
postcard 38, 42

animated 43
pre-requisite software 34
private data stores 124
process flow 2
properties 48
public data stores 124
public script 155
Publish/Subscribe 3, 4
put message options 52
put messages 82
put test message 82, 124
putFile.c 167, 178
putMsg.c 167, 174
putting messages 89

Q
QM.INI 135
QMgr.INI 36
QMTYPE 32
queue

exists 14, 17
instance 14
monitor depth 159
multiple instances 8, 10

queue manager
check status 127
components 127
create 126
properties 135
251

start 126
Web administration 148

queue name 39, 79
Quick Tour 38

R
recommendations 145
recovery 48, 142
reduced administration 7
refresh 55
refresh button 55
refresh repository 17
REGEDT32 36
regedt32 137
registry 36, 48, 137, 160
remote administration 145
remote queue 14
reply-to queue 209
report messages 213
repository 12, 13

queue 61, 105
queue manager 71
time 17

restart
a service 142
after failure 47

robustness 134
round-robin 15, 108
routing example 16
runmqchi 128
runmqlsr 127
RUNMQSC 26, 28, 124

and clusters 125
fails 127

S
scmmqm 47, 124, 125, 133
script 45

file 124
management 154
statements 151
statements(Web Administration) 151

security account manager 204
security database 206
Security Identifier 203
send notification 144
server connection channel

create 57

Service Pack 3 34
SETMQAUT 203
setmqaut 208
shared cluster queue 83
show cluster 91
show system objects 61, 81
SID 203
SNA 24
snap-in 47, 125
sophisticated scripts 124
stanzas 35
start

a cluster 92
channel initiator 128
listener 127
queue manager 28, 133, 144
queue manager using MQServices 134

startup types 133
stop a cluster 90
stop Explorer 91
strmqm 126, 144
supermarket checkout 11
SupportPac 55
system objects 61
SYSTEM.ADMIN.SVRCONN 39
SYSTEM.CHANNEL.INITQ 39, 128

open 128
SYSTEM.CLUSTER.COMMAND.QUEUE 105
SYSTEM.CLUSTER.REPOSITORY.QUEUE 105
SYSTEM.CLUSTER.TRANSMIT.QUEUE 17, 105
SYSTEM.DEAD.LETTER.QUEUE 57
SYSTEM.DEF.CLUSRCVR 105
SYSTEM.DEF.CLUSSDR 105
SYSTEM.DEFAULT.INITIATION.QUEUE 139
SYSTEM.DEFAULT.MODEL.QUEUE 209

T
tabular reports 159
target queue 14
task bar tray 132
TCP/IP 39, 46

loop back 26
TEMPDYN 209
temporary dynamic queues 209
throughput 10
trace 48
track cluster queues 160
transmission header 14
252 MQSeries Version 5.1 Administration and Programming Examples

transmission queue 13
trigger message 172
Trigger Monitor 139

U
update the registry 48
user ID 203
using control commands 144

V
verify installation 42
Version 5.1 33
virtual memory 34
Visual Basic 33

W
Web Administration 48, 124, 132, 147

authority 148
custom install 34
enabling 148
log on 149
scripts 147
Server 34

Web Browser 124
Web server 124
what’s new 2
Windows NT 147

user ID 33
WLlogger.c 118
workgroup productivity 2
working with clusters 89
workload

balancing 15, 55
distribution example 109
exit 15, 108

workload management 8
exit 116
exit routines 8

workload partitioning 12

X
xmit queue 13
253

254 MQSeries Version 5.1 Administration and Programming Examples

© Copyright IBM Corp. 1999 255

IBM Redbooks Evaluation

MQSeries Version 5.1 Administration and Programming Examples
SG24-5849-00

Your feedback is very important to help us maintain the quality of ITSO redbooks. Please complete this
questionnaire and return it using one of the following methods:

• Use the online evaluation form found at http://www.redbooks.ibm.com/
• Fax this form to: USA International Access Code + 1 914 432 8264
• Send your comments in an Internet note to redbook@us.ibm.com

Which of the following best describes you?
_ Customer _ Business Partner _ Solution Developer _ IBM employee
_ None of the above

Please rate your overall satisfaction with this book using the scale:
(1 = very good, 2 = good, 3 = average, 4 = poor, 5 = very poor)

Overall Satisfaction __________

Please answer the following questions:

Was this redbook published in time for your needs? Yes___ No___

If no, please explain:

What other redbooks would you like to see published?

Comments/Suggestions: (THANK YOU FOR YOUR FEEDBACK!)

http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html
http://www.redbooks.ibm.com/contacts.html

Printed in the U.S.A.

SG24-5849-00

M
Q

Series
V

ersion
5.1

A
dm

in
istration

and
P

rogram
m

ing
E

xam
ples

S
G

24-5849-00

	Contents
	Preface
	The Team That Wrote This Redbook
	Comments Welcome

	Chapter 1. About MQSeries Version 5.1
	1.1 The MQSeries Family
	1.2 Platforms
	1.3 What’s New in MQSeries Version 5.1
	1.4 Publish/Subscribe
	1.5 MQSeries and Java
	1.5.1 Example
	1.5.2 Connection Examples

	Chapter 2. About Clusters
	2.1 Why Clusters?
	2.2 Cluster Concept
	2.3 A Routing Example
	2.4 How Clusters Work
	2.4.1 Example with Two Queue Managers
	2.4.2 Example with Three Queue Managers
	2.4.3 Example with Four Queue Managers in Two Networks

	2.5 RUNMQSC Commands for Clusters

	Chapter 3. MQSeries for Windows NT Version 5.1
	3.1 Installation
	3.2 MQSeries First Steps
	3.3 Default Configuration
	3.4 MQSeries Postcard
	3.5 MQSeries Explorer
	3.6 MQSeries Services
	3.7 MQSeries API Exerciser

	Chapter 4. Creating a Cluster with the MQExplorer
	4.1 Creating the Queue Managers
	4.2 Creating a Cluster with Two Repository Queue Managers
	4.3 Joining Queue Managers to a Cluster
	4.4 Working with Local Queues in a Cluster
	4.5 Creating a Shared Cluster Queue
	4.6 Creating a Second Cluster Queue
	4.7 Working with Clusters
	4.7.1 Putting and Getting Messages
	4.7.2 Disassembling the Environment with the MQ Explorer
	4.7.3 Stopping a Cluster
	4.7.4 Showing a Cluster
	4.7.5 Starting a Cluster
	4.7.6 Summary

	Chapter 5. Creating a Cluster with Scripts
	5.1 Some Comments about the Listener
	5.2 Some Comments about Cluster Objects

	Chapter 6. Workload Management
	6.1 Controlling the Workflow
	6.2 A Workload Distribution Example
	6.2.1 Getting Prepared
	6.2.2 Clearing a Cluster Queue
	6.2.3 Putting Using Bind On Open
	6.2.4 Putting Using Bind Not Fixed
	6.2.5 Putting to a Local Cluster Queue

	6.3 Writing a Workload Management Exit
	6.3.1 About the Example
	6.3.2 Commented Program Listing for Exit WLlogger.c

	Chapter 7. MQSeries Administration and Service
	7.1 Experiments with Runmqsc and Clusters
	7.1.1 Creating a Queue Manager
	7.1.2 Starting the Listener
	7.1.3 Starting the Channel Initiator
	7.1.4 Connecting QM_5 to the Existing Cluster

	7.2 Experiments with MQSeries Services
	7.2.1 Automatic or Manual Start-up
	7.2.2 How to Start a Queue Manager Manually
	7.2.3 Working with Queue Manager Properties
	7.2.4 Creating a Queue Manager from the Services GUI
	7.2.5 Adding a Trigger Monitor
	7.2.6 Using the MQSeries Alert Monitor

	7.3 Using MQSeries Control Commands with the New GUIs
	7.4 Remote Administration

	Chapter 8. Web Administration
	8.1 Enabling Web Administration
	8.2 Logging in
	8.3 Getting Help
	8.4 Using Commands
	8.5 Using Scripts

	Chapter 9. Using the Performance Monitor
	9.1 Example 1: Track Cluster Queues
	9.2 Example 2: Check Cluster Behavior

	Chapter 10. File Transfer Programs
	10.1 Design
	10.1.1 putFile
	10.1.2 getFile

	10.2 Input Parameters
	10.3 Message Types
	10.3.1 Header Message
	10.3.2 Data Message
	10.3.3 Trailer Message
	10.3.4 Instruction Message
	10.3.5 Trigger Message

	10.4 mqfm_defs.h
	10.5 putMsg.c
	10.6 putFile.c
	10.7 getFile.c

	Chapter 11. MQSeries Security Changes
	11.1 MQSeries for Windows NT
	11.2 MQSeries Client Identification
	11.3 Long User IDs
	11.4 Authorization Check
	11.5 Security in Clusters

	Chapter 12. Using Dynamic Queues
	12.1 Temporary Dynamic Queues
	12.1.1 Creating a Temporary Dynamic Queue
	12.1.2 Writing to a Temporary Dynamic Queue
	12.1.3 Getting from a Temporary Dynamic Queue

	12.2 Report Messages
	12.3 Permanent Dynamic Queues

	Appendix A. Sample Configuration Output
	Appendix B. Log File Created by crt_str_all
	Appendix C. Source Code for clusput.c
	Appendix D. Source Code for fastget.c
	Appendix E. MQSeries Processes
	Appendix F. Diskette Contents
	F.1 Locating the additional material on the Internet

	Appendix G. Special Notices
	Appendix H. Related Publications
	H.1 International Technical Support Organization Publications
	H.2 Redbooks on CD-ROMs
	H.3 Other Publications

	How to Get IBM Redbooks
	IBM Redbooks Fax Order Form

	List of Abbreviations
	Index
	IBM Redbooks Evaluation

